PAINT TESTING MANUAL

Physical and Chemical Examination of Paints, Varnishes, Lacquers, and Colors

G. G. Sward, editor

Thirteenth Edition—1972

ASTM SPECIAL TECHNICAL PUBLICATION 500

List price $27.50

04-50000-14

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
To
Dr. Henry A. Gardner

whose vision and interest in developing and sharing knowledge of paint materials has endured for more than a half century
Preface to the Thirteenth Edition

When the twelfth edition of this book came off the press in 1962, its authors believed that their work was done. Others would henceforth take over—new faces, a new generation, new approaches.

But Dr. John C. Weaver had the idea that the work started by Dr. Henry A. Gardner should live on and grow. All it needed was a permanent sponsor. And this sponsor, he thought, should be the American Society for Testing and Materials, in which Dr. Gardner had been very active. The Society agreed, and in a brief but historic ceremony at the January 1967 meeting of Committee D-1 in Washington, D.C., ownership of the Gardner-Sward Handbook was transferred from the Gardner Laboratory to the American Society for Testing and Materials.

In accepting the gift, the Society assumed responsibility for revising, editing, and publishing future editions of this time-honored work. The project was assigned to Committee D-1 on Paint, Varnish, Lacquer, and Related Materials, who created a permanent subcommittee (Subcommittee 19 on the Gardner-Sward Handbook) to guide the policy and preparation of future editions. A. Gene Roberts was appointed chairman of this working committee which included Harold M. Werner and Mark W. Westgate, with the three officers of Committee D-1, J. C. Moore, J. C. Weaver, and W. A. Gloger, as ex-officio members. George G. Sward who had coauthored most of the previous editions, was selected to be the editor. The thirteenth edition attests to the dedication with which this subcommittee and the contributing authors accomplished their task.

The scope of this book is in keeping with the stated scope of Subcommittee 19: “To provide technical, editorial, and general policy guidance for preparation of the 13th and subsequent editions of the Gardner-Sward Handbook. The Handbook is intended to review for both new and experienced paint technologists the past, present, and foreseeable trends in all kinds of testing within the scope of Committee D01. It supplements, but does not replace, the pertinent parts (currently parts 20 and 21) of the ASTM Book of Standards. It describes briefly and critically all test methods believed to have significance in the world of paint technology, whether or not these tests have been adopted officially by the Society.”

As a general policy, in accordance with the above scope, standard methods that are described in detail in the ASTM Book of Standards are reviewed here only in sufficient detail to indicate the principle of operation, basic techniques and apparatus, area of usefulness, and a critique where appropriate. Test methods of particular merit and importance other than ASTM standard methods are described in greater detail.

Methods of limited usefulness or of largely historical interest are described only briefly. References to original or detailed sources of information are given wherever possible. The overall treatment, while not exhaustive, is sufficiently comprehensive to provide the paint technologist with a broad and critical guide to the selection of appropriate test methods.

A special debt of gratitude is due the authors who, without remuneration and often at a great sacrifice of personal time, contributed the material that made this work possible. Thanks are also due to those organizations that allowed authors to use company time for some of the writing, to contributors of photographs or drawings, and to the reviewers. The editor and the chairman appreciate the helpful interest of the ASTM publications staff.

G. G. Sward
Editor

A. G. Roberts
Chairman Subcommittee 19
ASTM Committee D01
Biographical Profiles

Herbert Barry, B.S. Queens College. Chapter 8.9, Paint for Marine Environment. Group Leader, Maintenance and Marine Coatings Laboratory, Mobil Chemical Co. For eleven years engaged in development and evaluation of coatings for use in marine environments. Member of National Association of Corrosion Engineers and New York Society for Paint Technology.

Harvey W. Berger, B.S. City College of New York. Chapters 10.7, Polarography; 10.8, Constant-Current Coulometry; and 10.9, Differential Thermal Analysis. Chemist, National Bureau of Standards, engaged in the development of test methods and analytical procedures for paint. Currently, Manager, HUD/NBS Project on Detection and Elimination of Lead Poisoning Hazard to Children. Other assignments have included flammability of fabrics and effects of pollutants on building materials.

Richard A. Bieneman, B.S. University of Michigan. Seamless Floors in Chapter 8.6, Tile-Like Coatings and Seamless Floor Testing. Manager, Chemical Products Department, Spencer Kellogg Division, Textron, Inc. Fields of interest include sealants, seamless flooring systems, and urethane elastoplastics. Has published papers on vegetable oils, universal tinting vehicles, and water-thinned paint. Member of American Society for Testing and Materials Committee D01, Society of the Plastics Industry, and Western New York Society for Paint Technology.

Ellsworth R. Blosser, B.A. Goshen College. Chapter 10.6, Mass Spectrometry. Associate Chief, Environmental and Materials Characterization Division, Battelle Memorial Institute. Twenty years developing techniques for trace detection in inorganic research materials, and application of optical emission spectroscopy, mass spectrometry, and spark-source mass spectrometry to varied problems. Present interest, ion microanalysis.

James A. Boylan. Chapter 6.2, Chemical Resistance. Manager, retired, Customer Service Laboratory, Oxy-Metal Finishing Group, Parker Co. For over forty years active in corrosion testing and surface treatment of metals. Member of American Society for Testing and Materials Committee D01 (honorary) and Detroit Society for Paint Technology.

George E. F. Brewer, Ph.D. University of Vienna. Chapter 8.10, Paint for Electrocoating. Staff Scientist, Manufacturing Center, Ford Motor Co. Initiated development of Ford electrocoating process and has published over 20 papers in this field. For these and other "outstanding contributions to automotive chemistry" awarded the 1969 Midgely Medal by the Detroit Section of the American Chemical Society.

Harry Burrell, Ch.E. Newark College of Engineering. Section on Solubility Parameter Systems in Chapter 2.7, Solvents. Technical Director, Building and Industrial Products, Inmont Corp. Fields of interest include entropy, solubility parameters, and high polymers. Recipient of first prize, Room Foundation Competition (twice), George B. Heckel Award, and first recipient of American Chemical Society Award in the chemistry of plastics. Member of New York Society for Paint Technology, Paint Research Institute, and Gordon Research Conference on Organic Coatings.

Robert M. Evans, Ph.D. Case Western Reserve University. Chapter 8.6, Tile-Like Coatings and Seamless Floor Testing. Vice-President for Research and Engineering, Mameco International; President, Isonetics, Inc. Fields of interest include organic coatings, adhesives, sealants, and floor materials. Author of many papers and patents. Chairman of American Society for Testing and Materials Committee D01.48 on Tile-Like Coatings and member of Cleveland Society for Paint Technology.

Neil B. Garlock, M.S. University of Texas. Chapters 7.1, Natural Weathering; and 7.2, Artificial Weathering. Chemist, Naval Ship Engineering Center. Field of interest includes specifications for paint and related products. For many years Chairman of American Society for Testing and Materials Committee D01.27 on Accelerated Weathering; and member of American Chemical Society, National Association of Corrosion Engineers, and Baltimore Society for Paint Technology.

Charles Grenko, B.S. Northwestern University. Chapter 4.1, Preparation of Films for Test. Western Electric Co., Hawthorne Works. His work has included design and installation of organic finishing systems, test methods, formulation, materials engineering, specifications, and electroplating. Currently installing a powdered resin coating system. Chairman of Group 11 on Film Thickness of American Society for Testing and Materials Committee D01.23; and member of American Chemical Society and American Electroplaters Society.

George W. Grossman, B.S. in Engineering Administration, Case Institute of Technology. Chapter 6.1, Resistance to Water Vapor and Liquid in the Atmosphere. President, Q-Panel Co. Principal fields of interest include influence of steel surfaces on paint performance, and destructiveness of water and ultraviolet radiation on paint. Chairman of Group 11 on Water Tests of American Society for Testing and Materials Committee D01.27; and member of National Association of Corrosion Engineers and Cleveland Society for Paint Technology.

Arthur E. Jacobsen, M.S. Polytechnic Institute of Brooklyn. Chapter 3.4, Particle Size Measurement. Research Chemist, retired, Titanium Division, NL Industries. Presently, Consultant. Principal fields of interest have included physical chemistry of paints and pigments, embracing hiding power, tinting strength, particle size, dispersion, weathering, photochemical reactivity, and chalking. Member of American Society for Testing and Materials Committee D01 (honorary), American Chemical Society, and Optical Society of America.
Thomas J. Keane, studied architecture and physics at Catholic University of America. Chapter 1.1, Color and Light. Manager, Manufacturing, Gardner Laboratory, Inc. Prime interest is development of instruments for measuring color, gloss, and the like.

W. T. Lewis, M.S. University of Georgia. Chapters 10.3, Ultraviolet Spectroscopy; and 10.4, Infrared Spectroscopy. Research and Development Laboratory, Mobil Chemical Co. Sixteen years industrial experience in spectroanalytical techniques, primarily in the area of polymers and coatings.

Robert F. Lohr, B.A. Rutgers University. Chapter 8.9, Paint for Marine Environment. Technical Director, Maintenance and Marine Coatings Department, Mobil Chemical Co. For 14 years associated with development of heavy duty industrial and marine coatings. Member of American Society for Testing and Materials, National Association of Corrosion Engineers, and New York Society for Paint Technology.

Howell H. McCowen, B.A. University of Cincinnati, Chapter 8.7, Bituminous Coatings. Senior Research Chemist, Standard Oil Co. (Ohio). Thirty three years in asphalt and petroleum technology, research, and service. Member of American Society for Testing and Materials Committee D-8 on Bituminous and Other Organic Materials for Roofing, Waterproofing, and Related Building or Industrial Uses; Association of Asphalt Technologists; and Roof Coating Committee of National Paint, Varnish, and Lacquer Association.

Parker B. Mitton, B.S. Newark College of Engineering. Chapters 1.3, Hiding Power; and 1.4, Mass Color and Tinting Strength. Associate, Research and Development Laboratory, Titanium Pigment Division, NL Industries, in charge of tests on titanium pigments. Joined company in 1948. Member of American Society for Testing and Materials Committee D01.

L. G. Montague, B.S. George Washington University. Chapter 8.1, Tests on Varnish. Chemist, Quality Control Laboratory, Gardner Laboratory, Inc. Thirty years in varnish formulation, processing, and control, ten years in development of instruments and methods of test for paints and related materials. Author of chapter on varnish in Characterization of Coatings by Myers and Long.

M. B. Neher, Ph.D. Purdue University. Chapter 10.6, Mass Spectrometry. Technical Representative, Organic Chemistry Division, Battelle Memorial Institute. Twenty years in organic chemical research. Past ten years have been concentrated in gas chromatography and mass spectrometry, and application of computer technique to organic analytical problems.

Horace E. Riley, B.S. Marietta College. Chapter 2.6, Plasticizers. Staff Chemist, retired, Union Carbide Corp., Chemical and Plastics Operation Division. Member of American Society for Testing and Materials Committees D01 and D-16 (honor­ary), American Chemical Society (emeritus), and American Institute of Chemists (fellow emeritus).

Richard T. Ross, Ph.D. University of Tennessee. Chapter 6.4, Biological Deterioration of Paints and Paint Films. Marketing Manager, Buckman Laboratories; previously, Research Manager. Principal research involved the biodeterioration of paint films and the development of microbiocides for paint. Chairman of American Society for Testing and Materials Committee D01.28 on Biodeterioration.

Willard F. Spengeman, Ph.D. University of Wisconsin. Chapter 2.8, Pigments. Director, Technical Service Laboratory, Pigments Department, duPont Co. Author of numerous papers on the role of pig­ments in the weathering of exterior archi­tectural paints. Active in American Society for Testing and Materials Committee D01.

G. G. Sward, M.S. University of Iowa. Chapters 2.2, Driers and Metallic Soaps; 2.3, Natural Resins; 2.5, Cellulosics; 3.1, Density, Specific Gravity, and Bulking Values; 3.4, Particle Size Measurement; 3.5, Oil Absorption of Pigments; 4.3, Drying Time; 7.2, Artificial Weathering; 8.2, Architectural Paints; 8.4, Waxes and Polishes; 8.5, Putty, Glazing Compounds, Caulking Compounds, and Sealants; 8.8, Traffic Paint; 11.1, Sources of Specifications. Director, retired, Scientific Section, National Paint, Varnish, and Lacquer Association. Consultant, Gardner Laboratory, Inc. Coauthor of recent editions of this book. Member of American Society for Testing and Materials Committee D01 (honor­ary), American Chemical Society (emeritus), and American Institute of Chemists (fellow emeritus).

Contents

Preface v
Biographical Profiles vii

Part I Optical Properties
1.1 Color and Light—H. K. Hammond, III AND T. J. Dean 1
1.2 Gloss—H. K. Hammond, III 15
1.3 Hiding Power—P. B. Mitton 22
1.4 Mass Color and Tinting Strength—P. B. Mitton 41

Part 2 Raw Materials
2.1 Drying Oils—E. C. Gallagher 53
2.2 Driers and Metallic Soaps—G. G. Sward 71
2.3 Natural Resins—G. G. Sward 76
2.4 Synthetic Resins—M. H. Swann 92
2.5 Cellulosics—G. G. Sward 119
2.6 Plasticizers—H. E. Riley 124
2.7 Solvents—W. H. Ellis 130
2.8 Pigments—W. F. Spengeman 150

Part 3 Physical Properties
3.1 Density, Specific Gravity, and Bulking Values—G. G. Sward 165
3.2 Viscosity and Consistency—J. P. McGuigan 181
3.3 Surface Energetics—D. M. Gans 213
3.4 Particle Size Measurement—G. G. Sward AND A. E. Jacobson 218
3.5 Oil Absorption of Pigments—G. G. Sward 239

Part 4 Films for Testing
4.1 Preparation of Films for Test—Charles Grenko 251
4.2 Measurement of Film Thickness—G. G. Sward 260
4.3 Drying Time—G. G. Sward 268

Part 5 Mechanical Properties of Films
5.1 Hardness and Related Properties—E. M. Corcoran 281
5.2 Abrasion Resistance—A. G. Roberts 301
5.3 Adhesion—E. M. Corcoran 314
5.4 Flexibility—G. G. Schurr 333
5.5 Tensile Strength and Elongation—G. G. Schurr 338

Part 6 Chemical Properties of Films
6.1 Resistance to Water Vapor and Liquid in the Atmosphere—G. W. Grossman 341
6.2 Chemical Resistance—J. A. Boylan 351
6.3 Fire Retardance and Heat Resistance—A. W. Van Heuckeroth 355
6.4 Biological Deterioration of Paints and Paint Films—R. T. Ross 366

Part 7 Weathering Tests
7.1 Natural Weathering—N. B. Garlock AND G. G. Sward 371
7.2 Artificial Weathering—N. B. Garlock AND G. G. Sward 405
7.3 Atmospheric Pollutants—Francis Scofield 413

Part 8 Specific Products
8.1 Tests on Varnishes—L. G. Montague 415
8.2 Architectural Paint—G. G. Sward 423
8.3 Cement-Base Paint and the Painting of Masonry—T. E. Nevins 429
8.4 Waxes and Polishes—G. G. Sward 436
8.5 Putty, Glazing Compounds, Caulking Compounds, and Sealants—G. G. Sward 445
8.6 Tile-Like Coatings and Seamless Floor Testing—R. M. Evans AND R. A. Bieneman 456
8.7 Bituminous Coatings—H. H. McCowen 462
8.8 Traffic Paint—G. G. Sward 468
8.9 Paint for Marine Environment—R. F. Loehr AND H. Barry 478
8.10 Paint for Electrocoating—G. E. F. Brewer AND R. D. Hamilton 486
8.11 Printing Ink—C. T. Ray 490
CONTENTS

Part 9 Analysis of Whole Paint
9.1 Sampling, Separations, and Identification of Binder and Solvent—J. D. MCGINNESS 495
9.2 Chemical Analysis of Pigments—G. G. SWARD 500

Part 10 Instrumental Methods of Analysis
10.1 Microscopy—W. K. LIND 515
10.2 Chromatography—G. G. ESPOSITO 522
10.3 Ultraviolet Spectroscopy—W. T. LEWIS 545
10.4 Infrared Spectroscopy—W. T. LEWIS 547
10.5 Atomic Absorption and Flame Emission Spectroscopy—J. K. DUFFER 550
10.6 Mass Spectrometry—E. R. BLOSSER AND M. B. NEHER 553
10.7 Polarography—H. W. BERGER 556
10.8 Constant-Current Coulometry—H. W. BERGER 560
10.9 Differential Thermal Analysis—H. W. BERGER 562
10.10 Nuclear Magnetic Resonance Spectroscopy—L. C. AFREMOW 564

Part 11 Specifications
11.1 Sources of Specifications—G. G. SWARD AND J. C. WEAVER 583

Index 587
Paint undergoing outdoor exposure testing in Arizona. Q-Lab is the world leader in weathering test equipment and test services for the paint and coatings industry. Q-Lab’s accelerated weathering testers simulate the primary weathering conditions that degrade paints and coatings outdoors, allowing our customers to accurately reproduce dozens of potential failure modes, including: Color change and fading. Yellowing. Manufacturer & distributor of paint testing instruments including paint test meters & paint adhesion test kits. Paint test meters are used for measuring electrical resistance of paint formulations for all electrostatic applications. Manual controlled abrasion wear testers & count controlled abrasion wear testers are available in 110 V, 220 V & 240 V voltage ratings. RCA abrasion wear testers are used in testing abrasion & wear resistance on flat, convex & concave shaped surfaces.