Air and Spaceborne Radar Systems: An Introduction

Philippe Lacomme
Jean-Philippe Hardange
Jean-Claude Marchais
Eric Normant

Translated from the French
by
Marie-Louise Freysz and Rodger Hickman
Other Books Under the SciTech Imprint

Low-angle Radar Land Clutter (2001)
Barrie Billingsley

George W. Stimson

John C. Toomay

Fred Nathanson

Simon Kingsley and Shaun Quegan

Hazardous Gas Monitors (2000)
Jack Chou

Richard Gedney, Ronald Shertler, and Frank Gargione

Moving Up the Organization in Facilities Management (1998)
A. S. Damiani

Return of the Ether (1999)
Sid Deutsch
Table of Contents

Foreword ... xvii
Preface ... xix

Part I — General Principles

Chapter 1 — The History and Basic Principles of Radar. 1
1.1 History ... 1
1.2 Basic Principles ... 2
 1.2.1 Basic Configuration 3
 1.2.2 Choice of a Wavelength 12

Chapter 2 — Initial Statements of Operational Requirements 13
2.1 Introduction ... 13
2.2 Missions ... 13
 2.2.1 Surveillance ... 13
 2.2.2 Reconnaissance 14
 2.2.3 Fire Control and Targeting 15
2.3 Carriers and Weapons 17
 2.3.1 Carriers ... 17
 2.3.2 Weapons .. 17
2.4 System Functions ... 17
2.5 Definitions of Flight Conditions 19

Chapter 3 — The RADAR Equation 21
3.1 Introduction ... 21
3.2 Signal Transmission and Reception 21
 3.2.1 The Role of the Antenna on Transmission 21
 3.2.2 Role of the Antenna on Reception .. 23
 3.2.3 Reflection from the Target 23
3.3 Radar Equation in Free Space 24
3.4 The Radar Cross Section of a Target 25
 3.4.1 Example of the Double Spheres 25
 3.4.2 General Example 27
3.5 Mathematical Modeling of the Received Signal 29
3.6 Direction of Arrival and Monopulse Measurement 32
 3.6.1 Angular Fluctuation (Glint) 33
Table of Contents

Chapter 4 — Propagation ... 35

4.1 INTRODUCTION ... 35

4.2 ROLE OF THE GROUND .. 35
 4.2.1 THE REFLECTION PHENOMENON 35
 4.2.2 THE PRESENCE OF OBSTACLES—
 DIFFRACTION ... 41

4.3 THE ROLE OF THE TROPOSPHERE 42
 4.3.1 NORMAL PROPAGATION 42
 4.3.2 ABNORMAL PROPAGATION 44
 4.3.3 ATMOSPHERIC ABSORPTION 45

4.4 OTHER PHENOMENA ... 46

Chapter 5 — Noise and Spurious Signals 47

5.1 INTRODUCTION .. 47

5.2 THERMAL NOISE ... 47
 5.2.1 THE CHARACTERISTICS OF THERMAL NOISE 47
 5.2.2 DEFINITION OF THE NOISE FACTOR 48
 5.2.3 NOISE FACTOR IN A RECEPTION CHAIN 49

5.3 RADIOMETRIC NOISE .. 50

5.4 SPURIOUS ECHOES AND CLUTTER 51
 5.4.1 CLUTTER AND GROUND CLUTTER 51
 5.4.2 SEA CLUTTER ... 56
 5.4.3 METEOROLOGICAL ECHOES
 (ATMOSPHERIC CLUTTER) 57

Chapter 6 — Detection of Point Targets 59

6.1 INTRODUCTION .. 59

6.2 THE OPTIMAL RECEIVER (WHITE NOISE) 60
 6.2.1 DEFINITION OF PROCESSING 60
 6.2.2 INTERPRETATION OF THE OPTIMAL
 RECEIVER .. 62

6.2.3 SIGNAL-TO-NOISE RATIO AT THE OPTIMAL
 RECEIVER OUTPUT ... 63

6.2.4 SIGNAL DETECTION IN WHITE NOISE 65

6.3 OPTIMAL RECEIVER FOR KNOWN
 NON-WHITE NOISE ... 69

6.4 ADAPTIVE RECEIVER FOR UNKNOWN
 NON-WHITE NOISE ... 70
 6.4.1 ADAPTIVE RADAR WITH A NOISE-ONLY
 REFERENCE SIGNAL ... 71
 6.4.2 ADAPTIVE RADAR WITHOUT A NOISE-ONLY
 REFERENCE SIGNAL ... 72

6.5 SPACE-TIME ADAPTIVE PROCESSING 75

6.6 WAVEFORM AND AMBIGUITY FUNCTION 76
 6.6.1 AMBIGUITY FUNCTION 78
 6.6.2 RESOLUTION CAPABILITY 82
6.6.3 PRECISION OF RANGE AND VELOCITY MEASUREMENT 84

PART II — TARGET DETECTION AND TRACKING

CHAPTER 7 — CLUTTER CANCELLATION 87

7.1 INTRODUCTION ... 87
7.2 WAVEFORM SELECTION 87
 7.2.1 CALCULATION OF GROUND CLUTTER
 RECEIVED BY THE RADAR 87
 7.2.2 GENERAL CLUTTER CANCELLATION 90
 7.2.3 CLUTTER CANCELLATION AND
 WAVEFORM SELECTION 95
7.3 IMPROVEMENT FACTOR AND
 SPECTRAL PURITY 101
 7.3.1 DEFINITIONS 101
 7.3.2 SPECTRAL PURITY 103
 7.3.3 CONSTRAINTS LINKED TO CLUTTER
 CANCELLATION 108
7.4 DYNAMIC RANGE AND LINEARITY 112

CHAPTER 8 — AIR-TO-AIR DETECTION 115

8.1 INTRODUCTION .. 115
8.2 NON-COHERENT LOW-PRF MODE 115
 8.2.1 WAVEFORM AND THEORETICAL PROCESSING 116
 8.2.2 NON-COHERENT RADAR BLOCK DIAGRAM 118
8.3 PULSE-COMPRESSION RADAR 127
 8.3.1 DEFINITION 127
 8.3.2 PULSE-COMPRESSION RADAR BLOCK
 DIAGRAM .. 128
 8.3.3 PULSE-COMPRESSION SYSTEMS 129
8.4 LOW-PRF DOPPLER RADARS (MTI) 131
 8.4.1 DEFINITION 131
 8.4.2 COHERENT LOW-PRF RADAR
 THEORETICAL ANALYSIS 131
 8.4.3 MTI BASIC BLOCK DIAGRAM 133
 8.4.4 ADDITIONAL MTI CONSIDERATIONS 136
 8.4.5 AIRBORNE MTI (AMTI) 136
8.5 HIGH-PRF RADAR 137
 8.5.1 CONTINUOUS WAVE (CW) RADAR 138
 8.5.2 0.5-DUTY CYCLE, HIGH-PRF RADAR 139
 8.5.3 RANGE MEASUREMENT 144
8.6 PULSE-DOPPLER MODE (HIGH- AND MEDIUM-PRF) 145
 8.6.1 DEFINITION 145
 8.6.2 IDEAL PULSE-DOPPLER RECEIVER 146
 8.6.3 PULSE-DOPPLER RADAR BLOCK DIAGRAM 149
Table of Contents

8.6.4 Range Gate Sampling 150
8.6.5 Frequency Analysis 152
8.6.6 Eclipse and Ambiguity Elimination ... 152
8.6.7 Detection Performance 154

Chapter 9 — Air Target Tracking 159
9.1 Introduction 159
9.2 Platform Motion and Attitude—
 Coordinate Systems 160
9.3 Single-Target Tracking (STT) 161
 9.3.1 Definition 161
 9.3.2 Acquisition—Presence 162
 9.3.3 General Structure of Tracking Loops ... 162
 9.3.4 Range Tracking 163
 9.3.5 Doppler Velocity Tracking 165
 9.3.6 Angle Tracking 165
9.4 Plot Tracking 166
 9.4.1 Definition 166
 9.4.2 Trajectory Estimation 166
 9.4.3 Tracking Management and Update 168
9.5 Track-While-Scan (TWS) 169

Chapter 10 — Ground Target Detection and Tracking . 171
10.1 Introduction 171
10.2 Detection and Tracking of Contrasted
 Targets 171
10.3 Detection and Tracking of Moving
 Ground Targets 171
 10.3.1 Low-speed Aircraft (Helicopters) 171
 10.3.2 High-speed Aircraft (Airplanes) 172

Chapter 11 — Maritime Target Detection and Tracking . 177
11.1 Maritime Surveillance Radars 177
11.2 Search Strategy 178
 11.2.1 Positioning of the Radar with
 Respect to Wind Direction 178
 11.2.2 Platform Altitude 178
11.3 Surface Vessel Detection 180
 11.3.1 Pulse-repetition Frequency 180
 11.3.2 Resolution 181
 11.3.3 Polarization 181
 11.3.4 Transmission Frequencies 181
 11.3.5 Processing 181
11.4 Detection of Small Targets (Periscopes) . 182
 11.4.1 Processing 182
 11.4.2 Resolution 184
 11.4.3 Pulse-repetition Frequency 184
11.5 MARITIME TARGET TRACKING 185
11.5.1 PURPOSE OF THE TRACKING FUNCTION 185
11.5.2 TRACKING INITIALIZATION 185
11.5.3 ALGORITHM DESIGN 185
11.6 MARITIME TARGET CLASSIFICATION 187
11.6.1 RADAR CROSS SECTION MEASUREMENT .. 187
11.6.2 RANGE PROFILE 187
11.6.3 IMAGING 188

CHAPTER 12 — ELECTROMAGNETIC POLLUTION 189
12.1 INTRODUCTION 189
12.2 ELECTROMAGNETIC COMPATIBILITY 189
12.3 INTERFERENCE FROM OTHER RADAR COMPONENTS 191
12.3.1 FREQUENCY SOURCE (MASTER OSCILLATOR EXCITER) 191
12.3.2 TRANSMITTER 192
12.3.3 ANTENNA ASSEMBLY 192
12.3.4 INTERMEDIATE FREQUENCY RECEIVER 193
12.3.5 DIGITAL PROCESSING 193
12.4 INTER-EQUIPMENT INTERFERENCE ON THE PLATFORM 194
12.4.1 DECOUPLING THE ANTENNA SYSTEMS 194
12.4.2 FREQUENCY DECOUPLING 195
12.4.3 OPERATION MANAGEMENT 195
12.5 UNINTENTIONAL INTERACTIONS 195
12.5.1 INTERACTIONS OUTSIDE THE RADAR BANDWIDTH 195
12.5.2 INTERACTIONS INSIDE THE RADAR BANDWIDTH 196

PART III — GROUND MAPPING AND IMAGERY

CHAPTER 13 — GROUND MAPPING 201
13.1 INTRODUCTION 201
13.2 PRINCIPAL PARAMETERS 201
13.2.1 AIRCRAFT MOTION 201
13.2.2 BEAM SHAPE 202
13.2.3 SIGNAL DYNAMICS ADAPTATION:
STC AND LOG RECEIVER 203
13.2.4 ANGULAR RESOLUTION 204
13.3 GROUND MAPPING WITH MONOPULSE
SHARPENING 205
13.3.1 SHARPENING BY SUPPRESSION 206
13.3.2 SHARPENING BY COMPRESSION 206
Table of Contents

Chapter 14 — Radar Imagery

14.1 Imaging Radar Applications 207
14.2 Image Quality . 208
 14.2.1 Resolution . 208
 14.2.2 Geometrical Linearity 212
 14.2.3 Signal-to-noise Ratio 212
 14.2.4 Radiometric Resolution 212
 14.2.5 Radiometric Linearity 214
 14.2.6 Contrast . 214
 14.2.7 Dynamic Range 216
14.3 Special Techniques for Range Resolution 222
 14.3.1 Deramp . 223
 14.3.2 Stepped Frequency 226
 14.3.3 Synthetic Bandwidth 229

Chapter 15 — Synthetic Aperture Radar

15.1 Design Principle 233
 15.1.1 Synthetic Aperture Radar:
 a Type of Doppler Processing 234
 15.1.2 Focused and Unfocused
 Synthetic Aperture 235
 15.1.3 A Remarkable Configuration:
 the Side-looking Antenna Radar . . 244
 15.1.4 Ultimate SAR Resolution 247
15.2 SAR Ambiguities 248
 15.2.1 Range Ambiguity 249
 15.2.2 Cross-range Ambiguity 249
15.3 Spaceborne SAR 251
 15.3.1 Side-looking Focused SAR Resolution . . 253
 15.3.2 A Range-ambiguous Waveform 254
 15.3.3 Antenna Surface Area 256
 15.3.4 Doppler Frequency and Yaw Steering . . 258
15.4 SAR Operating Modes 260
 15.4.1 Doppler Beam Sharpening, with
 Rotating Antenna 260
 15.4.2 Spotlight SAR 261
 15.4.3 Scansar . 262
 15.4.4 Squint or Off-boresight Mode . . 262
 15.4.5 Multilook Mode 263
 15.4.6 Other Modes 264

Chapter 16 — Synthetic Aperture Radar Specific Aspects

16.1 Migrations . 265
16.2 Phase Errors . 266
 16.2.1 Effect of a Periodic Phase Error
 of Frequency fn 267
16.2.2 Effect of a Random Error 271
16.3 Platform Motion 273
 16.3.1 Calculation Example: Motion
 along Platform Flight Axis 274
 16.3.2 Calculation of Transverse
 Motion and Vibration Effects 278
 16.3.3 Summary of Platform Motion 279
 16.3.4 X-band or L-band? 282
16.4 Spectral Purity 282
 16.4.1 Modeling 282
 16.4.2 Effects of Instabilities 283
 16.4.3 Other Sources of Frequency
 Instability 285
16.5 Signal Processing 286
 16.5.1 Transfer Function 287
 16.5.2 Processing Block Diagram 290
 16.5.3 “Single-pass” Processing 290
 16.5.4 Multilook Processing 292
16.6 Autofocus 294
 16.6.1 Introduction 294
 16.6.2 Multilook Registration 297
 16.6.3 Contrast Maximization 301
 16.6.4 Phase Gradient 303
 16.6.5 Asymptotic Performance of Autofocus 311
16.7 Power Budget 315
 16.7.1 Power Budget for Point Targets . 315
 16.7.2 Power Budget for Diffuse Targets . 316
 16.7.3 Multilook Processing 316
16.8 Localization Accuracy 317
 16.8.1 Localization Model 317
 16.8.2 Bearing Measurement Accuracy 318
 16.8.3 Computation of the Geographical
 Localization Error 320
 16.8.3 Example 321
16.9 Other Processing Methods 322
 16.9.1 Moving Target Detection 322
 16.9.2 Height Measurement Using
 Interferometry 323
 16.9.3 Polarimetry 326
 16.9.4 Image-enhancement Processing 328
 16.9.5 Thematic Processing 328

Chapter 17 — Inverse Synthetic Aperture Radar (ISAR) ..329
17.1 Objectives and Applications 329
17.2 Preliminary Description of ISAR 329
 17.2.1 Basic Principles 329
17.2.2 Resolution 331
17.2.3 Projection Plane 331
17.3 Imaging of a Ship at Sea 333
17.3.1 Modeling 333
17.3.2 Application 334

Chapter 18 — Other Observation Radars 337
18.1 Millimeter-wave Radars 337
18.1.1 The Benefits of Millimeter Waves 337
18.1.2 Airborne Applications: Field of Use .. 338
18.1.3 Cable RCS 338
18.2 Scatterometers 339
18.2.1 Orders of Magnitude 340
18.3 Altimeters 341
18.3.1 Antenna Beam 342
18.3.2 Power Budget 343

Part IV — Principal Applications

Chapter 19 — Radar Applications and Roles 347
19.1 Civil Applications 347
19.1.1 Space Systems 347
19.1.2 Air Transport Applications 347
19.1.3 Maritime Applications 347
19.2 Military Applications 348
19.2.1 Space Systems 348
19.2.2 Airborne Applications 348
19.2.3 Maritime Applications 348
19.3 Examples of Applications 348
19.3.1 Ground Observation from Space 348
19.3.2 Airborne Reconnaissance 350
19.3.3 Air Surveillance 355
19.3.4 Maritime Surveillance 356
19.3.5 Battlefield Surveillance 359
19.3.6 Air Superiority, Interception, and Combat 361
19.3.7 Tactical Support, Ground Attack, and Interdiction 364
19.3.8 Very Low-altitude Penetration 367

Chapter 20 — Design Overview 371
20.1 Basic Equations 371
20.2 Generic Radar Configuration 373
20.3 Space Observation Radar 373
Table of Contents

20.3.1 Mission Preparation and Management Chain 374
20.3.2 Image Chain ... 374
20.3.3 Image Exploitation Chain 377
20.4 Air-surveillance Radar (AEW) .. 377
 20.4.1 AEW Specifications .. 377
 20.4.2 Technical Description 378
 20.2.3 Performance Calculations 380
20.5 Maritime Surveillance Radar ... 383
 20.5.1 Surface Vessel Detecting Mode 383
 20.5.2 Detecting Small Targets (Periscope) 384
20.6 Battlefield Surveillance .. 385
 20.6.1 Specifications .. 385
 20.6.2 Technical Description 385
20.7 Interception Radar .. 389
 20.7.1 Specifications ... 389
 20.7.2 Technical Description 390
20.8 Tactical Support Radar ... 393
 20.8.1 Specifications ... 393
 20.8.2 Technical Description 394
20.9 Penetration Radar .. 400
 20.9.1 Specifications ... 401
 20.9.2 Technical Description 401

Chapter 21 — Multifunction Radar .. 403

21.1 Introduction ... 403
21.2 Radar Modes and Functions ... 403
 21.2.1 Functions .. 403
 21.2.2 Sizing .. 405
 21.2.3 Performance and Constraints 405
21.3 Technical Specifications ... 408
21.4 Technical Description .. 408
 21.4.1 Antenna ... 408
 21.4.2 Transmitter ... 408

Chapter 22 — Technological Aspects ... 411

22.1 Introduction ... 411
22.2 The Major Stages in Technological Innovation 411
 22.2.1 The Analog Age .. 411
 22.2.2 The Digital Age .. 413
 22.2.3 The New Age ... 415
22.3 Advances in Radar Components 416
 22.3.1 Electronic Circuits ... 416
 22.3.2 Electronic Power Circuits 417
 22.3.3 Transmitters ... 418
22.3.4 Antennas .. 419
22.3.5 Exciters ... 422
22.3.6 Receivers 423
22.3.7 Processing 424

22.4 Space Technology 428
22.4.1 Life Cycle 428
22.4.2 Resistance to Radiation 428

Part V — Radars of the Future

Chapter 23 — The Changing Target 433
23.1 Introduction 433
23.2 Electromagnetic Signature 433
23.3 Radar Cross Section 434
 23.3.1 Effects that Produce RCS 434
 23.3.2 Factors Influencing RCS 436
 23.3.3 Some Values for RCS 436
 23.3.4 Radar RCS 437
23.4 Reducing Electromagnetic Signature 439
 23.4.1 Achieving Low RCS 440
 23.4.2 Reducing RCS of the Radar 442
23.5 Conclusion-------- 442

Chapter 24 — Operational Aspects 445
24.1 Introduction 445
24.2 RCS Values 445
24.3 Detection Range 446
24.4 Self-protection Range 447
24.5 Missions .. 447

Chapter 25 — Principal Limitations of Present-day Radars . 449
25.1 Introduction 449
25.2 Physical Limitations 449
 25.2.1 Power Budget 449
 25.2.2 Interception Probability of
Transient Targets 451
 25.2.3 Limits on Accuracy in Measuring
Target Parameters 451
 25.2.4 Resolution Limits 452
 25.2.5 Limitations on Angular Coverage 453
25.3 Technological Limitations 453
 25.3.1 Waveform 453
 25.3.2 Spectral Purity and Dynamic Range 454
 25.3.3 Data Flow 454
 25.3.4 Exploitation 455
Table of Contents

Chapter 26 — Electronically Steered Antennas...... 457
 26.1 Introduction 457
 26.2 Operational and Technical Benefits
 of ESA for Airborne Radars 458
 26.2.1 Fighter Radar 458
 26.2.2 AEW Radar 460
 26.2.3 Air-to-Ground Surveillance 461
 26.2.4 Maritime Patrol Radar 462
 26.3 Competing ESA Solutions 462
 26.3.1 Reflectarray 463
 26.3.2 RADANT ESA 464
 26.3.3 Active ESA (AESA) 465
 26.4 Conclusion: ESA Solutions for
 Airborne Radars 466

Chapter 27 — Airborne and Spaceborne Radar
 Enhancement 469
 27.1 Introduction 469
 27.2 Response to Target RCS Reduction 469
 27.2.1 Power Budget Increase 469
 27.2.2 Using Low-frequency Bands 470
 27.2.3 Multistatic Radar 471
 27.3 Countering Electromagnetic Threats 472
 27.3.1 Waveforms 472
 27.3.2 Beam Matching (Digital Beamforming) . 473
 27.4 Multiple and Evolving Targets;
 Angular Coverage 474
 27.4.1 Electronic Scanning: Detection
 and Scanning Strategies 474
 27.4.2 Conformal Antennas and
 Dispersed Antennas 475
 27.5 Space Imaging Radar 476
 27.5.1 Short- and Medium-term Development 476
 27.5.2 Long-term Development 476
 27.5.3 Air-Space Cooperation 476

Chapter 28 — Conclusions 477

List of Acronyms 479

List of Symbols 483

Bibliography .. 487

About the Authors 493

Index ... 495
The history of airborne radar is almost as old as that of radar itself. The improvement in detection range provided by an airborne platform was realised early during the Second World War, and the development of the cavity magnetron at almost the same time allowed higher radar frequencies and, hence, directive antennas to be used. Nowadays, radars on aircraft have a great variety of functions: from navigation and meteorological purposes, to more specialised purposes on military aircraft associated with surveillance and weapon delivery. Development of processing techniques such as coherent Moving Target Indication and Synthetic Aperture Radar have been matched by huge advances in technology, such as digital processing and solid-state phased arrays. More recent decades have seen the development of satellite-borne radars for geophysical environmental monitoring and surveillance applications.

A book that brings together a detailed theoretical treatment and a systems-level engineering understanding of the subject is both unusual and of great potential value to the radar community. The structure of the book combines a coverage of the principles of radar with a discussion of different applications and missions, showing how the design of the radar is adapted to each. The final chapters are devoted to a view of future technological developments and the ways that airborne and spaceborne radars may be expected to develop in response to new types of targets and missions. The French radar industry has played a significant role in the development of many of the innovations in airborne and spaceborne radar. The authors of this book are acknowledged as experts in the field and they provide a uniquely European perspective on the subject.

For all of these reasons, this book will be of value to a wide audience, both as a reference to radar engineers and those responsible for the specification and procurement of airborne and spaceborne radar systems, and as a textbook in graduate-level courses on radar.

Hugh Griffiths
Professor, University College London
IEEE PGE5 Committee, IEEE Radar Systems Panel
Preface

For over half a century, radar has been a permanent feature of surveillance activities. Practically unaffected by meteorological conditions, it operates independently of sunlight, while its detection ranges and the angular domain it covers make it an essential tool for continuous surveillance of a very wide area. Over the last fifty years, radar operational capability and performance have continued to improve, and one can safely assume that this will hold true for the coming decades.

This book, devoted to airborne and spaceborne radar, avoids a purely theoretical approach and is certainly not intended for an “elite” group of specialists. Rather, it is a practical tool that we hope will be of major help to technicians, student engineers, and engineers working in radar research and development. The many users of radar, as well as systems engineers and designers, should also find it of interest.

Airborne and spaceborne radar systems, themselves highly complex systems, are fitted to mobile and often rapidly changing platforms that contain many other items of equipment. Radar can therefore not be considered as a separate entity. Its design must ensure its “compatibility” with the systems of which it forms a part, and with the dense electromagnetic environment to which it is often exposed. Naturally, and most importantly, it must also satisfy operating requirements.

Radar technology evolves at a rapid pace and can quickly appear obsolete. For this reason it is only briefly developed in this work. However, we have taken the major trends into account when describing the next generation of radars, as their feasibility is largely dependent on these new developments.

The book is divided into five parts:

- General Principles
- Target Detection and Tracking
- Ground Mapping and Imagery
- Principal Applications
- Radars of the Future

Following a historical overview and a reminder of the main principles behind radar, the functions, modes, properties, and specific nature of modern airborne radar systems are studied in detail. Next, the book examines radar’s role within the mission system when carrying out missions assigned to the aircraft or the satellite. The fourth section covers
the possibilities of radar as well as its limitations and constraints. Finally, given changing operational requirements and the potential opened up by technological development, the final section describes how radar may evolve in the future.

Remark

As airborne and spaceborne radars are often used in military applications, and in order to comply with security regulations, in this book we refrain from quoting existing systems or equipment that are either under development or in use. Explanations and examples are therefore based on the laws of physics (i.e., information that is in the public domain) and on hypothetical “equipment.”
This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar’s role within the system when carrying out its assigned missions, showing the possibilities of radar as well as its limitations. The authors review the current state of the main types of airborne and spaceborne radar systems, designed for specific missions as well as for the global environment of their host aircraft or satellites. They include numerous examples of the parameters of these radars. The emphasis in the book is not only on a particular radar technique, but equally on the main radar functions and missions.