Interpreting the Book of Nature

Angus J. L. Menuge

The idea of nature as a book provides one of the richest and most often appropriated metaphors for the natural world. Plato, Aristotle, the Stoics, and Christians have all seen the work of the scientist as tracing out the telos or logos inscribed in nature by some demiurge or god. Critics of design, from Francis Bacon to Daniel Dennett, also see science as a kind of reading. Bacon urged that nature was a text which, to be rightly understood, must not be anticipated but humbly interpreted. Dennett concludes evolutionary biology must employ “artifact hermeneutics” to discern what biological structures are adaptations for. Nonetheless, for Dennett, the text is written by the blind process of natural selection, not via the agency of an author. The metaphor of nature as text is congenial to both proponents and critics of Intelligent Design.

In this essay, I will trace the history of the idea that nature is a book from early Greek science, through the Middle Ages and Reformation, and culminating in the rise and critique of natural theology. First we will try to understand how science ever got started: What prompted some people to stand back from their busy lives to open the book of nature in the first place? Next we will draw on the recent work of Peter Harrison, in which he argues persuasively that the Reformation provided the crucial hermeneutical change that overcame scholasticism and made modern science possible. Then we move to the great controversy between natural theology and its critics. This we will consider as fundamentally a drama about rival hermeneutics and the proper limits of theological and scientific interpretation. We will attempt to show that sound hermeneutics are vital to understanding the interplay between science and religion.

Opening the Book

Before science can get started, humans must have the idea that nature is congenial to systematic study. Not all ways of understanding nature support this assumption. Animism and polytheism suggest that nature itself is sacred, so that it would be a sacrilege to dissect it, and also that nature is governed by a multiplicity of local deities and is thus too heterogeneous and capricious to support universal laws. Excessive spiritualism or exclusive concern for eternal truth may disparage nature as the realm of transience, maya (illusion) or corruption, making its systematic study a pointless or even sinful diversion.

Even Plato had tendencies in the latter direction, but overcame them by proposing a more fruitful connection between the eternal and the temporal. If the eternal realm is fundamentally orderly and rational, and the temporal universe is a copy, then if the copy preserves enough of the original qualities, it should be intelligible to human reason. Speaking for Plato, Timaeus says that “the world has been framed in the likeness of that which is apprehended by reason and mind,” that is, in the (imperfect) likeness of the Forms. The cosmos was understood as an organism, “a living creature truly endowed with soul and intelligence by the providence of God.” While moderns will find this picture anthropomorphic, the assumption that the cosmos is an intelligent organism rather like us at least guarantees
that nature’s order is intelligible to humans, making the project of science possible.

Despite this nudge forward for science, Plato’s philosophy inhibited its full potential. For one thing, he distinguished a corrupt sublunary realm from the superlunary region, where alone entities truly fulfilled their telos: “The sublunary part was ... a partial failure.” Due to this distinction in Plato’s vitalistic universe, he “deprived it of a thorough, universally valid orderliness.” Although Plato had the genius to suggest that much of physics could be reduced to geometry, thereby anticipating Descartes, Kepler, and other giants of the scientific revolution, he did not think that geometry was valid for the corruptible Earth, a view hardly congenial to terrestrial physics. The major problem was that Plato divorced essences or forms from concreta so that universal truths were found only in the eternal realm. Thus science was viewed as speculating about the eternal mind on the basis of its temporal image, an activity that could at best yield approximations.

A decisive move away from this picture was made by Plato’s great student Aristotle, who suggested that essences were actually contained in substances. If this is true, then scientific analysis of substance can hope to rival mathematics in its ability to discern forms. Aristotelian metaphysics made it possible to think that science could discover necessary connections (laws) by examining the essences of particulars. Since the Platonic realm was rational, when Aristotle imported it into particulars, these were predicted to conform to rational principles. Science became the project of discerning what a substance’s nature was, which would tell us what it was inclined to do, and thus predict its characteristic behavior. The mentalism of Plato’s approach to the universe was thus displaced, but not eliminated.

In addition to the material and efficient causes still recognized throughout contemporary science, Aristotle also emphasized the formal and final causes. Looking at the development of embryos into chickens, Aristotle observed a programmed series of changes, which he supposed derived from the characteristic form of chickens contained in the embryo. Although contemporary science has challenged the claim that DNA is the exclusive determinant of development, it is not absurd to suggest that the discovery of DNA partially confirmed Aristotle’s insight about embryogenesis, and this holds regardless of whether the properties of DNA are understood from the perspectives of Darwinism, theistic evolution, self-organization, or design. Outside biology, however, modern science sees much less use for formal causes because typical physical objects are taken to be passively obedient to external laws rather than enacting active principles within themselves. Even less popular is Aristotle’s idea that each substance had some final end, which provides a teleological explanation of its current behavior. Teleology of this kind is rejected by most contemporary scientists, except in the case of a human or other observable intelligent agent. Yet both the laws of thermodynamics and various anthropic principles are suggestive of a universe that has a certain in-built direction.

Darwinists like Gould have claimed that were the evolutionary tape rewound and played again, it is most unlikely that life as we know it would re-evolve. However, theistic evolutionists, self-organizers, and proponents of Intelligent Design would expect similar patterns to emerge, pointing to the fine-tuning of physical constants and the stability of species as evidence. Some Darwinists also concede that what Dennett calls “forced moves in the game of life” would channel natural selection along somewhat predictable paths.

Aristotle sets out an early form of the design inference, arguing that if we find a natural entity whose development corresponds to an artifact which we know is designed, we can conclude that the natural entity is designed as well.

Aristotle sets out an early form of the design inference, arguing that if we find a natural entity whose development corresponds to an artifact which we know is designed, we can conclude that the natural entity is designed as well. Swallows make nests; spiders make webs. Aristotle concluded that these products are artifacts produced for a purpose. When Aquinas taught Aristotle to speak like a Christian, he extended this argument by pointing out that if the swallow and spider lack the intelligence to direct their craft, it instead must be located in their creator and director (Aquinas’ Fifth Way). Before Humean skepticism about the discernability of God’s purposes and the various recent attempts to reduce intelligence to unintelligent causes, this seemed a very persuasive argument to most people. Thomist hermeneutics take us from the text all the way to its author, in cheerful disregard of postmodern claims that the author is “dead” or unrecoverable.

Christianity also provided some additional presuppositions that helped science along its way. That this is so seems to many a matter of historical record, although it does not follow that these presuppositions cannot be detached from Christianity and supported on independent grounds. Christians contributed the idea that the entire universe was created ex nihilo by a single, rational being. As we saw, Greek science had supposed that the
By distinguishing the Creator from the creation while yet retaining the idea that the creation was good, Christianity removed the universe’s sacred status, making its study and dissection morally permissible, while upholding the value of matter against the Gnostic disdain for it. And if God is identified with the logos, a principle of rational order, and one in whose image we are made, there is a foundation for Plato’s expectation of an intelligible, orderly universe. It seems undeniable that this assumption is one that can never be justified from the bottom-up (i.e., from human perceptions of phenomena), as it is essentially equivalent to solving the insoluble problem of induction. The pragmatic need for a faith in natural order seems to be a prerequisite for doing science, and it is a major challenge for naturalism to justify this faith.

In all of these ways, the idea of divine design has helped science, not so much by providing specific theories, as by legitimating general research programs directed toward the discovery of universal laws. The secularist may grant the historical value of this theological scaffolding, but claim it has been used to build a materialist edifice that no longer has need of it. Conversely, quite a few philosophers, including me, are coming to the conclusion that scientific materialism cannot justify its foundational assumptions independently of theism.

Still, it must be admitted that Christianity has not always been a friend to science. To be sure, most contemporary scholars agree that the Enlightenment picture of the Dark Ages as an authoritarian stifling of science is an overdrawn caricature that ignores important scientific advances in both mathematics and theoretical physics. But it is undeniable that scholasticism impeded the development of modern empirical science, and that some Christian assumptions were partly to blame for this.

From Scholasticism to Modern Science

There is little doubt that the scholastic scientists of the medieval period related textual interpretation to nature in unhelpful ways. Not only Scripture, but all classical works were taken as authoritative. It was supposed that Adam’s knowledge before the Fall was much more complete than our own, and that even after the Fall, early texts retained many great insights now in danger of being lost through the progressive corruption of the human mind. Thus Peter Harrison argues:

The mastery of nature at which thirteenth and fourteenth century minds aimed, amounted to a reconstruction of a past body of knowledge, the ruins of which could be discovered in those texts of the ancients.

Not only that, scholasticism followed the obsession of the early church fathers with allegorical interpretations of the text. This was extended from Scripture to the study of nature so that a hermeneutics of nature aimed not at an accurate description of the facts about an entity but at discernment of its symbolic meaning. These meanings were thought to reside in authoritative texts, making empirical investigation of the world unnecessary. Harrison writes:

The turn to nature as an entity in its own right was a turn to texts about nature … Such was the nature of the scholastic method that discovery took place through exegesis and argument rather than by observation and experiment.

As a result, medieval bestiaries evince quite credulous acceptance of a variety of non-existent creatures (harpies, unicorns,
centaurs, satyrs and many more), and unsubstantiated fables about real creatures, such as the claim, going back at least as early as St. Ambrose, that the pelican’s mother wounds itself in Christ-like manner to revive its young.23

Behind this approach to the study of nature lies the assumption that natural objects, especially animals and plants, are designed by the Creator to educate humans, in particular, to teach moral lessons. This assumption is one that encourages the human mind to intuit and anticipate essential meanings in an armchair fashion, rather than carefully investigate the natural facts. The idea that nature must be a certain way effectively precludes our checking out whether this is the case. In that sense, Bacon was surely right to complain that an a priori notion of design is an idol of the mind, deadly to scientific progress. It also warrants an important distinction between the hermeneutics of theology and science. Theologically, we can assert that God works providentially. In this sense, granted God’s revelation, we do have a priori knowledge of design. However, this does not imply that science can anticipate the means God will use or his final purpose. If design has a scientific role, it must be the more modest one of an a posteriori conclusion. As a result, science needs a different, more modest hermeneutic from theology.

Oddly enough, it was improvements in textual analysis that partly explain the fall of scholasticism.24 The emerging science of textual criticism revealed that current copies were frequently corrupt, motivating a search for the original text. In the process of sorting out variant meanings to make sense of the original, it became necessary to actually investigate the natural facts. The idea that nature must be a certain way effectively precludes our checking out whether this is the case. In that sense, Bacon was surely right to complain that an a priori notion of design is an idol of the mind, deadly to scientific progress. It also warrants an important distinction between the hermeneutics of theology and science. Theologically, we can assert that God works providentially. In this sense, granted God’s revelation, we do have a priori knowledge of design. However, this does not imply that science can anticipate the means God will use or his final purpose. If design has a scientific role, it must be the more modest one of an a posteriori conclusion. As a result, science needs a different, more modest hermeneutic from theology.

When demonstrable fact and not traditional commentary is paramount, it becomes possible for theologians to uphold God’s Word and for scientists to uphold nature as their final epistemic authorities.

When demonstrable fact and not traditional commentary is paramount, it becomes possible for theologians to uphold God’s Word and for scientists to uphold nature as their final epistemic authorities. Harrison writes:

In freeing persons to make determinations about the meaning of the book of scripture without deferring to authorities, the reformers had at the same time made room for individuals to make determinations about the book of nature, unfettered by the opinions of approved authors.26

The Reformation emphasis on total depravity and the sovereignty of God made it inappropriate for a mere human to claim to discern via unaided reason the symbolic meanings and ultimate purposes of God. Some of these purposes are revealed by Scripture and so can be read via the theological hermeneutic. But at best, the scientist could hope, like Lutheran astronomer Johannes Kepler, to discern the patterns God had left behind in nature, and, in this limited way, to think God’s thoughts after him.

Nonetheless, the idea of design was still important in shaping scientific work. As Peter Barker argues, Lutheran theology provided grounds for expecting nature to obey a discernible Logos. He writes:

The specifically Lutheran doctrines of the ubiquity and the Real Presence of Christ in the host are the
While Christianity—in the form of allegorical scholasticism—was certainly to blame for medieval stagnation in science, it is also true that the reinvigorated Christianity of the Reformation came to its rescue.

Natural Theology and its Critics

The powerful integration of science and religion which began on the continent, later flourished in the predominantly British school of natural theology. What remained of Aristotle after the birth of modern science was widespread, although not universal, commitment to final causes. No longer, however, were these causes viewed as occult essences within substances, as Aristotle had supposed. Rather, final causes could be discerned by straightforwardly investigating the benefits of a phenomenon to humanity. Work along these lines varied from the sensible (Walter Charleston’s study of the uses of blood, respiration and muscles), to the suspect (Henry More’s claim that rivers are designed as natural quarries of stone), to the outrageously Panglossian. Perhaps Noël Pluche gets the prize for the latter category, with the following suggestion:

The woodworm, which eats the hull of ships, actually contributes to harmonious international relations, for it provides opportunities for some countries to sell to others pitch with which to protect ships’ hulls: “Thus does this little Animal, which we so much complain of as being troublesome and injurious to us, become the very Cement which unites these distant nations in one common Interest.”

At this extreme, science became an exercise in post hoc rationalization with the doubtful aim of defending God’s wisdom. At the same time, wiser heads like those of Robert Boyle, William Harvey, Robert Hooke, and John Ray argued that the microscope reveals an organic world brimming with evidence of design, regardless of whether or not we can discern its ultimate purpose.

Boyle was more careful to distinguish the theological from the scientific hermeneutic, confining his scientific investigation to the material mechanisms. Convinced that matter was completely passive and unable to give an ultimate explanation of its own order, Boyle was free to draw the theological conclusion that this order evinced divine design. Indeed Boyle was concerned that
Although distinct from science, natural theology has undoubtedly contributed to science by motivating careful examination of the functioning of physical and biological systems.

Although distinct from science, natural theology has undoubtedly contributed to science by motivating careful examination of the functioning of physical and biological systems. For example, medicine started to flourish when scientists asked such questions as “What is the function of the heart, lungs, and other parts of the circulatory system?” Indeed, the identification of these physical structures as a circulatory system presupposes a functional stance of analysis, and this was contextually motivated by a belief in divine providence. But natural theology also came under increasing criticism, some friendly and some unfriendly.

As superior telescopes revealed the vastness of space, the possibility of extraterrestrial life was first discussed. To many it no longer seemed credible that humanity, residing in a tiny part of a huge universe, was the sole beneficiary of nature. This led to a decisive move away from anthropocentric to more broadly cosmological design. To many it no longer seemed credible that humanity, residing in a tiny part of a huge universe, was the sole beneficiary of nature. This led to a decisive move away from anthropocentric to more broadly cosmological design.39

The universe is for God’s purposes to be sure, but these need not always be the purposes of humans.

At a more conceptual level, some philosophers, including Bacon, Descartes, and Hobbes, objected in various ways to the reliance of natural theologians on final causes. Bacon argued that the natural theologians were unwilling to accept the limits of human understanding and the inevitability of “brute facts” which would accept no further explanation. Instead, Bacon charged, humans project their own agency onto the world, supposing that a being like man rather than of the universe …40

Descartes also thought that science should focus on the mathematical properties of matter in motion and that the idea of final causes was “premised on a false analogy from human actions and motivations”42 to the divine. On the other hand, Harrison argues that the critics of final causes overplay their hand. He writes:

The search for divine purposes in the natural order provided a clear religious warrant for a pursuit which might otherwise have been regarded as the accumulation of vain and futile knowledge, little different from the bookish and unprofitable endeavors of the encyclopaedists. The scientific achievements of men such as Robert Boyle and John Ray give the lie to Bacon’s assertion of the baleful influence of final causes.43

It is true that Boyle did not regard final causes as part of physical science,44 which he believed was concerned only with the secondary causes operative in material mechanisms.45 Nonetheless, final causes were a crucial theological motivation for asking scientifically fruitful questions.46

Against the idea of integrating the scientific and theological hermeneutics, Bacon argued that the words of Scripture and of the book of nature are of quite different kinds. He wrote: “Heretical religion as well as fanciful philosophy derives from the unhealthy mingling of divine and human.”47 Moreover, some argued that the more nature is viewed providentially, the more acute is the problem of evil. While some of the theodicies for natural evil were ingenious, many were strained. Also, there were many different ways of accounting for the same evil, and no clear way to adjudicate which of these was correct.

From these considerations, many concluded that natural theologies were engaging in fanciful speculation with no relevance to the empirical demonstrations of science.

Despite his rejection of final causes in physics, Descartes grounded science in the confidence that if we restrain our errant will, we are capable of understanding the rational, and especially the geometric, order of the universe. But both Christian theology and agnostic skepticism gave grounds for doubting this optimistic view of human cognitive powers. The reformers took total depravity to mean that human will and reason is unable to know God personally without regeneration. But does this depravity also darken the human understanding of the book of nature? A radical form of theological skepticism would argue that human reason is no longer analogous to the divine, so that scientific realism is doomed to failure. Perhaps scientific theories do not justify ontological com-
Dialogue: Article
Interpreting the Book of Nature

Even by the nineteenth century, the criticisms of Bacon, Descartes, Hobbes, Hume, and Kant had not unseated the argument for design. Although many had unorthodox ideas about the nature of God, they were not incompatible with his being a designer ...

Skepticism was replaced by a confidence in human reason that made appeals to religious foundations seem redundant. Though Kant himself was devoutly Christian, there is no doubt that his thinking encouraged the move from an interventionist natural theology to deism. If Kant and Laplace were right about the inherent rational order of the cosmos, surely the universe is more like a carefully crafted machine than a living organism. While organisms need constant support and attention, an automaton devised by a perfect engineer might easily be supposed to require no further intervention, making of God a sort of cosmic Maytag repairman, with nothing left to do except read the newspaper. Aesthetically, some preferred the idea of a God who got it right the first time and had no need to tinker with his handiwork.48 Pushed too far, of course, this made the Incarnation itself a source of embarrassment. But it was just at this time that naturalistic criticism of the Bible began to suggest that the Bible was full of legendary material, and that the miracles did not really happen. For those who could not bear such a distant, uncaring God, pantheism and varieties of nature worship got God back into nature, sacrificing his transcendence to maintain his immanence. Such a God could easily be identified with the life force or spirit of progress that came to dominate in the eighteenth and nineteenth centuries. He was, of course, British!

Even by the nineteenth century, the criticisms of Bacon, Descartes, Hobbes, Hume, and Kant had not unseated the argument for design. Although many had unorthodox ideas about the nature of God, they were not incompatible with his being a designer, and Paley’s Bridgewater Treatises were influential because, despite the skeptical worries about final causes, no one had a serious rival theory. To say that the divine might not be analogous to the human or that our faculties might not be able to discern divine purposes falls short of a demonstration that this is the case. Only a plausible reading of the natural text that makes appeal to a designer superfluous could justify outright rejection of the design hypothesis.49 Such a reading was provided by Charles Darwin’s The Origin of Species (1859).

Darwin’s most important philosophical insight involved a careful distinction between the appearance and reality of design. Neither Darwin nor Richard Dawkins, his most vigorous contemporary spokesman, had any doubt that biological systems appear to be designed. This is why it is so worthwhile to treat creatures, organs, and biochemical structures as artifacts or machines. Nonetheless, from the fact that something appears to be designed, it does not follow that it actually is. Darwin’s contribution was to supplement this philosophical distinction with a hypothesis that would account for the appearance of design in nature without invoking a designer. Darwin argued that living creatures diversify through a process of descent with modification, where some source of variation (unknown to Darwin) led to both advanta-
geous and disadvantageous traits among a species’ progeny. The structure of the environment and competition for the crucial resources of food and mates jointly act as a sieve, tending to the extermination of the maladapted and the increase of the well-adapted. Since well-adapted creatures are those with traits that happen to suit their environment, this process of entirely natural selection fosters the illusion that the traits were explicitly designed for a purpose.

Darwin’s contribution was to [formulate] a hypothesis that would account for the appearance of design in nature without invoking a designer.

The process is thoroughly mechanistic and, some felt, quite ruthless and wasteful, making it hard to see how a loving God could carry out his providential plans through such means. Deism, which was already on the theological scene, was co-opted as a means of keeping God’s hands clean of the blood that ran from tooth and claw. It might be possible to explain why God would allow such goings on, but his active involvement in them seemed unjustifiable to many. Still, if evolution meant progress (a doubtful inference from Darwin’s theory⁵⁰), perhaps one could think of a World Soul or Life Force, which was propelling us ever closer to enlightenment. The carnage of the primitive past was regrettable, but perhaps it was justified if it eventually produced people as civilized as Victorians. Some, however, felt that there was simply no way to get God off the hook. If Darwin was right about how life develops, then natural evil seemed to be an essential part of the process, and the conclusion must be that either God lacks one of the traditional attributes (omniscience, omnipotence, or holiness),⁵¹ or that he does not exist at all. Others were more determined to retain an orthodox Christian faith. Following Karl Barth, the Neo-Orthodox placed the salvific Gospel events (*Geschichte*) in a separate self-validating realm of suprahistory, where they could not be falsified by the facts of history, no matter how recalcitrant. The Gospel events then show that the Lord is a loving God, regardless what natural science uncovers. Conversely, some who insisted that God really acted in the same history about which science speaks, felt that there was no option but to reject much of Darwin’s theory. To the latter group, Darwin’s account was incompatible with the idea that God creates things good and continues to sustain and care for his creation.

Other approaches attempt to defang Darwin by showing that one can have one’s cake and eat it, too. Some claim that the hermeneutic of science cannot uncover spiritual truths, so that the medieval and Reformational hope for an integrated interpretive strategy for both Scripture and nature must be abandoned. The problem of evil in nature only occurs if we read the scientific facts spiritually, but that is to confuse science and theology. Perhaps Bacon was right that “heretical religion as well as fanciful philosophy derives from the unhealthy mingling of divine and human.” One natural outcome of this line of thinking is Gould’s model of theology and science as Non-Overlapping Magisteria (NOMA), with science the authority on natural fact and theology the arbiter of morality and ultimate meaning. Others, less skeptical of God’s providence, argue that the process of evolution itself evinces God’s purpose of moving toward perfection through suffering. They also may point out that natural selection seems to work too well and that species seem to be too stable for evolution to be a blind process. It still seems plausible to many that humans are part of the telos or direction of evolution and so, it is thought, Darwinists are wrong if they suppose themselves to have abolished final causes (a view with which a minority of Darwinists and many theistic evolutionists agree). Most recently, proponents of Intelligent Design (ID) argue that the natural text is not being given a fair reading because of the background assumption of methodological naturalism. Should nature have anything to say of the supernatural, this assumption serves as a gag order, producing a censored and mutilated text akin to Jefferson’s Bible.

Intelligent Design raises red flags for some who see it as a return to the confusion of science and theology of which some of the natural theologians were guilty. Walter Thorson has developed this criticism with impressive sophistication, arguing on theological and methodological grounds that science proper is not in the business of detecting divine design.⁵² Thorson agrees with ID that the mechanistic, reductionist paradigm of physics is unable to account for the “functional logic” of biochemical structures, and he agrees that it is natural and warranted by the objective facts for Christians who are scientists to infer a designing intelligence. However, Thorson argues that this inference is not a scientific but a theological one. First, Thorson rightly notes that a foundational requirement of science is that its findings be accessible to all competent investigators, regardless of their spiritual condition. Second, Thorson claims on scriptural grounds that “transcendence means that God and God’s agency in creation cannot be subjected to scrutiny by the unrepentant and autonomous rational powers of humans.”⁵³ Unregenerate humanity cannot “name” God in the sense of identifying who he is or what he is doing in creation.

In my view, Thorson’s second claim is largely, but not entirely correct. Thorson is absolutely right that unregenerate humans cannot gain a personal knowledge of God by their own reason; this is clearly incompatible with salvation by grace alone. But at least the more careful ID
proponents would point out that one can detect the marks of an unknown agency, just as the pagans of Acts 17 had an altar to an unknown God. What is more, this agency might not even be personal. It might be the impersonal logos of the stoics. That we can detect design without knowing the agent or its motives is clear from human cases. Ancient archaeological finds include artifacts whose maker and purpose no one can identify.

Secondly, I think Thorson goes too far in limiting natural knowledge of God. Paul’s Epistle to the Romans surely implies that the reason the unbeliever is “without excuse” is that he does have impersonal knowledge of God. Paul writes:

The wrath of God is being revealed from heaven against all the godlessness and wickedness of men who suppress the truth by their wickedness, since what may be known about God is plain to them, because God has made it plain to them. For since the creation of the world God’s invisible qualities—his eternal power and divine nature—have been clearly seen, being understood from what has been made, so that men are without excuse (Rom. 1:18–20, NIV).

It is clear from these verses that the unbeliever does detect the anonymous agency of God; in other words, he can see the marks of God’s agency and even the qualities of the agent, without thereby attributing either of them to God. It is not, as Thorson seems to claim, that these marks or qualities are inaccessible to the unbeliever, so that they violate the requirement that scientific evidence must be accessible to all competent investigators. The reason that the unbeliever continues to reject this knowledge is not cognitive but volitional impairment. Unbelieving scientists can access the marks of design, but their wills are opposed to interpreting it as evidence of a designer. If science is the search for objective knowledge, it should not be constrained by the fact that some wish to suppress that knowledge when it clearly, though anonymously, implicates the divine. Intelligent Design may or may not turn out to be fruitful for science. But so long as it only claims to detect anonymous design, I do not think it muddles the distinction between the scientific and theological hermeneutics, which Thorson so rightly insists on. Science may detect altars to an unknown God. Theology will proclaim who that God is.

While hermeneutics by itself does not resolve the controversies, it is helpful to understand the various positions as ultimately tracing to rival hermeneutics. In particular, many of the most important issues in the current debates on evolution and design hinge on alternative methods of harmonizing natural and revealed texts and on alternative assumptions concerning the authority of a text and what, in principle, it is allowed to say to us.

Conclusion

Science began when nature appeared to be intelligible—something one might read like a book. Tracking the transformation and diversification of the nature as a text metaphor provides a useful means of understanding the successes and failures of science. Science stagnates when a hermeneutic for the natural text encourages a dogmatic presumption (or anticipation) of nature’s proper course, as occurred in the Middle Ages. It is therefore essential to distinguish an a priori theological hermeneutic from the a posteriori hermeneutic appropriate for science. Nonetheless, the scientific and theological hermeneutics are related.

A good scientific interpretation is one that allows nature to speak for itself and yet which is motivated by and connected to an overarching frame of meaning provided by revealed theology. Such a method of reading nature was essential to the birth of modern science, but there is no guarantee it will continue to prevail today. There are now many rival hermeneutics, and some of these, by detaching natural processes from their divine direction, provide fragmentary or incoherent readings. A good way to assess the overall worth of a perspective (that is, a family of hermeneutics) on the relationship between science and religion is to examine its overall success in providing a full and integrated reading of the texts, and this means both Scripture and the book of nature.

Acknowledgments

I am indebted to Walter Thorson for his acute and insightful comments, to an anony-
mous referee of this journal for many helpful suggestions, and to Ted Davis for advice about Robert Boyle. The mistakes that remain are all mine.

Notes
1Francis Bacon rejected the idea of final causes in science, seeing them as camouflaging our ignorance of the real causal explanation of the phenomena. See Lisa Jardine and Michael Silverthorne, eds., The New Organon (Cambridge: Cambridge University Press, 2000), Bk. 1, LXV and Bk. 2, II.
2Bacon’s The New Organon contrasts the “true” method of science, which proceeds via a posteriori induction from particulars (the “Interpretation of Nature”), with the a priori analysis of nature according to preconceived intuitions of essences (the “Anticipation of Nature”), which was employed by Aristotelian scholasticism. See Bk. 1, XXVI–XXIII, and Bk. 2 as an outline of the method of interpretation.
4No one has made this point more vigorously than historian and philosopher of science Stanley Jaki. He has further pointed out that impoverished conceptions of nature tend toward stagnation and “still-births in science. For a recent statement, see jaki’s The Savior of Science (Grand Rapids, MI: Eerdmans, 2000).
5Since our ancestors were almost universally religious, a fruitful theo- logy of nature was practically, if not logically, essential to the birth of science. While this view was typically rejected by Enlightenment thinkers, it is uncontroversial among contemporary historians of science. See, for example, Margaret Osler’s recent collection, Rethinking the Scientific Revolution (Cambridge: Cambridge University Press, 2000), where important essays show the connections between theological ideas and the development of modern science.
6The general point is also well made in the first chapter of Peacey and Thaxton’s The Soul of Science (Wheaton, IL: Crossway Books, 1994).
8Timaeus, 30b, Plato: Collected Dialogues, 1163.
9Stanley Jaki, Bible and Science (Front Royal, VA: Christendom Press, 1996), 77.
10If indeed there was a scientific revolution, a matter of much recent dispute. See, for example, the exchange between the late Betty Jo Dobbs, who questions the aptness of the revolution metaphor in her essay “Newton as Final Cause and First Mover,” and Richard S. Westfall, who defends it in his “The Scientific Revolution Reasserted,” both in Margaret Osler, ed., Rethinking the Scientific Revolution.
12On the other hand, many Darwinists will be quick to dispute Aristotle’s background essentialism about species. For example, Dennett argues that biological anti-essentialism is definitive of Darwinism (Darwin’s Dangerous Idea, 35–9).
13Physics, 194a, 20–33, in The Basic Works of Aristotle, 250.
14Although Jaki is vigorous in his argument that alternatives to Christianity, both religious and secular, in fact, do not provide as fertile a soil for science. That is his main thesis in The Savior of Science.
15Ibid., 54–8.
16Ibid., 79–81.
17Ibid., 83.
18For example, Robert Koons argues that naturalism is inconsistent with the view that science is a reliable guide to ontology. See Koons’ “The Incompatibility of Naturalism and Scientific Real- ism,” in William Lane Craig and J. P. Moreland, eds., Naturalism: A Critical Analysis (London: RKP, 2000), 49–63. In the same volume, Michael Rea argues that naturalism cannot even justify its commit-
HarperCollins, 1999), 217.] On this view God does not need to intervene in a special way (except for miracles) because he is always involved in shaping creation via the ordinary means of his laws.

The hypothesis seemed to have the a posteriori support of the scientific hermeneutic as well as the a priori support of the theological hermeneutic.

Undirected evolution has no fixed and final goal. Consequently there is no way to define an absolute metric for progress. The best one can do is talk of relative progress, progress in adapting to the currently operative fitness landscape, which may change tomorrow.

If God is not omniscient, perhaps he does not know about some of the evil; if he is not omnipotent, perhaps he cannot prevent it; and if he is not holy, perhaps he does not want to do so. Such a being might be a god, but not the God of Abraham, Isaac and Jacob, and perhaps not one particularly worthy of worship.

For example, I think Walter Thorson is right to follow Michael Polanyi in arguing that the functional logic of biochemical structures cannot properly be read through the mechanistic lens of classical physics.

Books Received and Available for Review

(Contact the book review editor if you would like to review one of these books. Choose alternate selections.)

Richard Ruble, Book Review Editor, Perspectives on Science and Christian Faith, 212 Western Hills Drive, Siloam Springs, AR 72761. ruble@tcainternet.com

S. M. Barr, Modern Physics and Ancient Faith, Notre Dame Press, 328 pages, 2003

Robert Buckman, Can We Be Good Without God? Biology, Behavior, and the Need to Believe, Prometheus Books, 278 pages, 2002

W. J. Elliott, A Place at the Table: A Journey to Rediscover the Real Jesus, Doubleday, 420 pages, 2003

George A. Erickson, Time Traveling With Science and the Saints, Prometheus Books, 177 pages, 2003

Donald Fernie, Setting Sail for the Universe: Astronomers and Their Discoveries, Rutgers University Press, 200 pages, 2003

D. J. Lococo, Towards a Theology of Science, Novalis, 80 pages, 2002

David Toolan, At Home in the Cosmos, Orbis, 250 pages, 2001

The strength and originality of Diderot’s book has sometimes been said to lie in the philosopher’s peculiar ability to “smell out” directions that were far beyond the intellectual horizon of the typical eighteenth century philosopher. This gift appears not only in his insights into experimental method but also in his own “interpretation of nature,” for Diderot was not a positivist and had no intention of limiting human knowledge to the results of observation and experimentation. One of the main differences between the observer of nature and the interpreter of nature is that the latter takes as