Contents

Table of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>1. Domesticated Poultry: A Description</td>
<td>1</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>1</td>
</tr>
<tr>
<td>Domestication and Improvement of Poultry</td>
<td>1</td>
</tr>
<tr>
<td>The Poultry Population and its Distribution</td>
<td>4</td>
</tr>
<tr>
<td>Further Reading</td>
<td>8</td>
</tr>
<tr>
<td>2. The Products</td>
<td>9</td>
</tr>
<tr>
<td>Poultry Carcasses</td>
<td>9</td>
</tr>
<tr>
<td>Carcass Yields</td>
<td>9</td>
</tr>
<tr>
<td>Meat</td>
<td>12</td>
</tr>
<tr>
<td>Fat</td>
<td>17</td>
</tr>
<tr>
<td>Liver</td>
<td>19</td>
</tr>
<tr>
<td>Eggs</td>
<td>19</td>
</tr>
<tr>
<td>Yields of Egg Components</td>
<td>21</td>
</tr>
<tr>
<td>Composition and Quality of Eggs</td>
<td>22</td>
</tr>
<tr>
<td>Further Reading</td>
<td>30</td>
</tr>
<tr>
<td>3. Growth</td>
<td>32</td>
</tr>
<tr>
<td>The Physiology of Growth</td>
<td>32</td>
</tr>
<tr>
<td>Muscle Growth</td>
<td>32</td>
</tr>
<tr>
<td>Bone Growth</td>
<td>33</td>
</tr>
<tr>
<td>Fat Growth</td>
<td>34</td>
</tr>
<tr>
<td>Models of Growth</td>
<td>36</td>
</tr>
<tr>
<td>Whole Body Growth</td>
<td>36</td>
</tr>
<tr>
<td>Growth of Body Parts</td>
<td>38</td>
</tr>
<tr>
<td>Further Reading</td>
<td>39</td>
</tr>
<tr>
<td>4. Female Reproduction</td>
<td>41</td>
</tr>
<tr>
<td>The Reproductive Tract</td>
<td>41</td>
</tr>
</tbody>
</table>
The Ovary 42
Egg Formation Tract 42
Egg Laying Patterns 45
Timing of Egg Laying 45
Photoperiodic Responses 48
Egg Production Characteristics 50
Egg Numbers 50
Egg Weight 51
Egg Mass Output 52
Egg Composition 53
Age at Sexual Maturity 53
Prediction of Egg Production Characteristics 53
Egg Numbers 53
Egg Weight 54
Age at Sexual Maturity 57
Factors That Stop Egg Laying 58
Photorefractoriness 58
Broodiness 58
Moulting 59
Lighting Programmes 62
Simple Light–Dark Programmes 62
Intermittent Light Cycles 62
Ahemeral Cycles 65
Further Reading 67

5. Male Reproduction 70
The Male Reproductive Tract 70
Sperm Production 70
Semen 72
Characteristics 72
Production 72
Artificial Insemination 73
Advantages of Artificial Insemination 73
Practical Methods of Artificial Insemination 74
Further Reading 77

6. Incubation 79
Development of the Embryo 79
Morphology 80
Nutrient Supply 81
Excretion of Waste Material 81
Respiration 82
Handling and Storage of Hatching Eggs 82
Collection and Cleaning 82
| Freedom from Hunger and Thirst | 125 |
| Freedom from Discomfort | 126 |
| Freedom from Pain, Injury or Disease | 127 |
| Freedom to Express Normal Behaviour | 127 |
| Freedom from Fear and Distress | 128 |
| Further Reading | 129 |
| **Index** | 131 |
Abdominal fat 17
Absorption of nutrients 102
Adipose tissue 17–18
Ahemeral light cycles 65–67
Air
 movement in poultry houses 118–121, 123–124
 pollutants 123–124
Air cells in eggs 20, 27, 82
Albumen 19, 21, 27
Alimentary canal see Digestive tract
Allantois 80–82
Allometric growth ratios 36–38
AME (apparent metabolizable energy) 104
Amino acids 106–111
Ammonia 123–124
Amnion 80–82
Anas platyrhynchos 1, 2
Anatidae 1, 2
Anatomy 3
Animal welfare 124–130
Anser anser 2
Antioxidants 18
Appetite 111
Artificial
 incubation 84–88
 insemination 73–77, 94
Avian species 1, 2
Bacteria
 in digestive tract 17, 100, 102
 in eggs 23–25, 83
Barley 26
Battery see Cage systems
Beak trimming 127
Behaviour 126–128
Blastoderm 19, 80
Blood loss, from carcass at slaughter 14–15
Blood spots in eggs 26
Bliverrdin 29
Body
 composition 9–14
 external anatomy 3
 weight see Growth
Bones 33–35
Breast meat see Meat
Breeding 91–98
Breeding companies 3, 91
Breeds of poultry 3–4
Broiler see Domestic fowl (meat-strains); Turkeys
Brooders 120–121
Broodiness 59
Buildings 116–127, 128
Caeca 102
Cage systems 126–127, 128
Calcium
 in egg shell 29
 in muscle 16
 in poultry feeds 61, 114–115
requirements of poultry 93, 111
Candling of eggs 30
Cannibalism 127
Carcass
 composition and quality
 fat 17–19
 meat 13–17
 growth 39
 yields 9–12
Carbohydrates
 in eggs 22
 in poultry feeds 104, 112–115
Carbon dioxide
 concentrations in poultry houses 123–124
 in hatching eggs 27, 80, 82, 85, 86
Cairina moschata 1, 2
Catching of live poultry 121
Cereals 113
Chalazae 19
Chicken see Domestic fowl
Chilling see Refrigeration
Cholesterol 18, 21, 2–23, 26
Chorioallantois 82
Chromosomes 91
Cloaca 17, 43, 45, 72, 102
Cooling
 of carcasses 11, 16
Index

of eggs 24
of poultry buildings 120
Cold shortening of muscle 15
Cold storage see Refrigeration
Colony housing systems 128–129
Colour
of body fat 18–19
detected by avian eyes 122
of egg shell 29
of egg yolk 26–27
of feathers 95
of meat 14, 15
Composition
of eggs 19–30
of poultry carcasses 9–12
of poultry feeds 111–115
Cone layer in egg shells 28, 29
Controlled environment housing 119–124
Coturnix japonica 2
Cramming 19
Crop 100
Cross-breeding 93, 94, 95
Cuticle of egg shells 28–29

Day lengths see Light
Deep litter systems 129
Digestion 99–102
Digestive tract 39, 99–102
Diluents, of semen 76–77
Domestic fowl
breeding programmes 94–95
carcass composition 11–14
domestication 1
egg composition 21
egg production characteristics 52
growth 37
photosfractoriness 49–50
rearing juvenile birds 126
taxonomy 1, 2
Dominant genes 95, 96
Drinkers 126
Ducks
Common duck
breeding programmes 92–94
carcass composition 11–14
domestication 1
egg composition 21–22
egg production characteristics 52
growth 37
taxonomy 1, 2
Muscovy duck
carcass composition 11–14
domestication 1–2
growth 37
taxonomy 1, 2
Duodenum 102
Ductus deferens 70–71
Dust 124
Dwarfing gene 96
Dyschondroplasia 35
Egg
composition and quality
albumen 27
shell 28–30, 53
whole egg 21–24
yolk 24–27, 53
formation 42–45
laying patterns 45–48
mass produced by laying birds 50–53
production and consumption statistics 5–7
Electrical stunning of poultry 14
Embryo development 79–82
Energy requirements of poultry 103–106
Environmental control in poultry houses 116–124
Environmental pollutants 123–124
Evisceration 9–11
Extenders of poultry semen 76–77
Extensive production systems 4, 128–129
Eye 121

Fans 119–121
Fats
in carcass 15, 17–18
colour in carcass 18–19
digestion 102
in eggs 22
growth in carcass 34–35, 39
in poultry feeds 113–115
Fatty acids
in carcass fat 18
in eggs 26
requirement of poultry 103, 111
Feather
colour 95
loss in moulting 60
pecking 127
plucking after slaughter 9–10
sexing of day-old chicks 95–96
Feed
composition 112–115
intakes 111
Feeders 126
Fertility 41, 74
Fertilization 41, 44, 70
Flavour of poultry meat 16–17
Floor-rearing systems 126–127
Foie-gras 1, 19
Formaldehyde 83
Fumigation 83

Gallus gallus 2
Genes 91
Genetic engineering (gene transfer) 96–98
Genetic improvement 91–98
Germinal disc 19
Gizzard 101
Glycogen 16
Gompertz equation 36–37
Goose
carcass composition 11–12
domestication 1, 2
egg composition 21–22
egg production characteristics 52
taxonomy 1, 2
Gradings, size of eggs 55–57
Grass 129
Index

Grit 101
Growth
- components of 32
- models of 35-40
- physiology 32-35
Guinea fowl
- breeding systems 74
- egg composition 21
- egg production characteristics 52
- taxonomy 1, 2

Hatchability 79, 84, 89
Handling of hatching eggs 83-84
Hanging of carcasses 17
Hatcheries 87-88
Hatching eggs 83-89
Heaups 27

Heating
- of hatching eggs 86, 88
- of poultry houses 120-121
Heterosis 93, 94, 95
Hormones 33, 35
Housing 116-124, 129
Humidity
- in incubators 85-86
- in poultry houses 124
Hybrids
- commercial poultry 92-95
- inter-species 1
Hydrogen sulphide 123-124

Ideal balance of amino acids 106
Incubation 79-89
Incubators 87-89
Infundibulum 43-44
Ingredient composition of foods 112-115
Insemination 73-77
Insulation in poultry houses 118, 119
Intermittent lighting programmes 63-65
Internal laying 44
Intestines see Digestive tract
Isthmus 43-44

Kidneys 82
Koilin 101

Lamps 122-123
Leg weakness 34-35
Leghorn 3, 96
LH (luteinizing hormone) 44, 45-46, 48, 49, 58, 59
Light
- detection by poultry 121-122
- effect on age at sexual maturity 57, 123
- effect on egg production 56, 62
- effect on time of ovulation 45-47
- intensity 121
- sources of light 122
Lighting programmes 62-67
Limestone 112, 115
Limiting amino acids 109
Linear programming for feed formulation 112
Linolenic acid 103, 111
Lipids see Fat

Litter 17
Liver 19, 36, 39
Lutein 27
Lysine 106-111, 113
Lysozyme 27
Magnum 43-44
Maize 26
Mating
- efficiency of 74
- natural mating systems 73
- sex ratios 74
- ME (Metabolizable energy) 104-106
Meat
- colour 14
- consumption and production 5-7
- yield from carcasses 12-13, 13-14, 39
Meat spots in eggs 26
Meleagris gallopavo 2
Methane 123-124
Methionine 106-111
Minerals
- in bones 32
- in eggs 22, 28
- in poultry feeds 113-114
- in semen diluents and extenders 76
- requirements of poultry 103, 111
Models
- of egg laying patterns 45-47
- of egg production 53-57
- of egg size grades 55-57
- of growth 35-40
Monogenic traits 95-96
Moulting 60-62
Mules 1
Muscles 10, 15-16, 32-33
Muscovy ducks see Ducks, Muscovy

Nest boxes 83
Nutrients
- allowances for poultry 103-111
- composition of foods 112-115
Nutrition 99-115

Open period for egg laying 45-47
Orientation of hatching eggs 87
Osteoblasts 34
Osteoclasts 34
Ova 26, 42-44
Ovaries 25, 42-43, 60
Oviduct 42-45, 77
Oviposition see Timing of egg laying
Ovomucin 27
Ovulation 45-48
Ovum see Ova
Oxygen 82, 86

Palisade layer in egg shells 28, 29
Panting 117
Pedigrees flocks 92, 94
Pellets 113
Pepsin 101
Percheries 129
Peristalsis 102
Index

pH
 in digestive tract 101, 102
 of eggs 27, 84
 of poultry meat 15-16
 of semen 72, 76

Phasianidae 1, 2

Phosphorus
 in poultry feeds 114-115
 requirements of poultry 103, 111

Photoperiodic responses 48-50, 53, 58, 63, 67

Photorefractoriness 48-50, 58

Pigmentation see Colour

Plucking 9-10

Point of lay poultry 50-51

Porphyrin 26, 29-30, 44

Poultry breeds, commercial importance 3

Poultry housing 116-124

Poultry populations 4-7

Powered ventilation 119-121

Progesterone 44, 46, 58, 60

Protein
 amino acid balance 106-111
 composition in carcass 15, 37
 composition in eggs 22
 composition in poultry feeds 113-114
 concentrates 112
 requirement by poultry 111

Proventriculus

PSE meat 15-16

Quail
 domestication 2
 egg composition 21-22
 egg production characteristics 52
 taxonomy 1, 2

Radiant heat 116-117, 121

Range systems 128-129

Rations 112-115

Refridgeration
 of carcasses 9-10
 of eggs 24

Reproduction
 female 41-69
 male 70-78

Retina 121

Retroviruses 97

Rhode Island Reds 3

Rice 26

Rickets 35

Rigor mortis 9, 15

Salmonella 23-25

Selection methods 91-95

Semen see Sperm

Sensible heat loss 116-117

Sex, change of 42

Sex differentiation of young poultry 95-96

Sexual dimorphism 36

Sexual maturity 42, 50, 56

Shell
 colour 29
 composition 21, 26
 function 20

strength 29

Shell gland see uterus

Skeleton 33-34

Skin colour 16-19

Slaughter methods 9-11

Sodium 103, 111, 115

Sperm
 composition 72
 production 70-73
 storage in female 41

Spondylolisthesis 35

Starch 113

Storage of hatching eggs 84

Stunning 14

Taints 16-17

Taxonomy 1, 2

Temperature
 control in poultry houses 118-121
 for hatching eggs 85-86
 regulation in poultry 116-118

Testes 70-71

Theremoregulation 116-117

Thermostats 118-119

Timing of egg laying 45-46, 67

TME (true metabolizable energy) 104

Transgenics 96-98

Transparent fluid in semen 72, 75

Transport of poultry 10

Trap-nesting 94

Turkeys
 breeding programmes 94-95
 carcass composition 11-14
 domestication 1
 egg composition 21-22
 egg production characteristics 52
 growth 37
 photorefractoriness 49
 taxonomy 1, 2

Turning of hatching eggs 87

Ureter 71

Uric acid 82

Uterus 43-44

Vagina 43, 45, 75

Ventilation of poultry houses 119-121

Vision 121, 122

Vitamins
 in eggs 22
 in poultry diets 114-115
 requirements of poultry 103-104
 Vitamin A 34, 104
 Vitamin D 29, 34, 104
 Vitamin E 18, 104

Vitellin 24

Vitelline membrane 20

Washing of hatching eggs 83

Water
 in carcass 15, 16
 in eggs 22, 26, 82
 evaporative heat loss 117
 loss in hatching eggs 82
<table>
<thead>
<tr>
<th>Index</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>reabsorption in digestive tract</td>
<td>102</td>
</tr>
<tr>
<td>requirement of poultry</td>
<td>104</td>
</tr>
<tr>
<td>vapour in poultry housing</td>
<td>123–124</td>
</tr>
<tr>
<td>Waterfowl see Ducks; Geese</td>
<td></td>
</tr>
<tr>
<td>Weight gains see Growth</td>
<td></td>
</tr>
<tr>
<td>Welfare</td>
<td>124–130</td>
</tr>
<tr>
<td>Wind direction</td>
<td>119–120</td>
</tr>
<tr>
<td>Wheat</td>
<td>26, 112</td>
</tr>
<tr>
<td>White Leghorn</td>
<td>3</td>
</tr>
<tr>
<td>Xanthophylls</td>
<td>18–19, 26–27</td>
</tr>
<tr>
<td>Yolk</td>
<td></td>
</tr>
<tr>
<td>colour</td>
<td>26–27</td>
</tr>
<tr>
<td>composition and quality</td>
<td>21, 24, 26</td>
</tr>
<tr>
<td>Yolk sac</td>
<td>80–82</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>27</td>
</tr>
<tr>
<td>Zinc</td>
<td>61, 103</td>
</tr>
</tbody>
</table>
Principles of Poultry Science book. Read reviews from world’s largest community for readers. Poultry are farmed and are important sources of protein throughout the world. All students of agriculture are likely to be required to study poultry science to at least an introductory level. However, hitherto there has been no suitable textbook serving the needs of students taking a general introductory course in poultry science. This book aims to fill this gap. It explains that poultry are farmed and are important sources of protein throughout the world. All students of agriculture are likely to be required to study poultry science to at least an introductory level. However, hitherto there has been no suitable textbook serving the needs of students taking a general introductory course in poultry science. World’s Poultry Science Journal. Volume 9 Issue 2. The Economic Principles of Poultry Husbandry by English and Francais. World’s Poultry Science Journal. Article. Article. A paper read at a meeting of the United Kingdom Branch of the World’s Poultry Science Association, London, March 20, 1953. Recommend this journal. Email your librarian or administrator to recommend adding this journal to your organisation’s collection. World’s Poultry Science Journal. The importance of each Principle changes with the situation and thus the emphasis placed on each may alter from place to place and from time to time. This means that, while the Principles do not change, the degree of emphasis and method of application may change. Every facet of the poultry operation should be tested against the relevant principle(s). The Principles of Poultry Husbandry are: The quality and class of stock. If the enterprise is to be successful it is necessary to use stock known to be of good quality and of the appropriate genotype for the commodity to be produced in the management.