Antimetabolites of Nucleic Acid Metabolism: The Biochemical Basis Of Their Action, With Special Reference To Their Application In Cancer Therapy

Peter Langen

Antimetabolites of Nucleic Acid Metabolism: The biochemical basis of their action, with special reference to their application in cancer therapy. Peter Langen


CYTOSTATICS - Carcinogenic Risk in Occupational Settings CRIOS Antimetabolites of nucleic acid metabolism by Peter Langen, ISBN. Chemotherapy by Design - Springer Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis of Their Application in Cancer Therapy on Chiral Drugs: Chemistry and Biological Action - Google Books Result Title, Antimetabolites of Nucleic Acid Metabolism: The Biochemical Basis of Their Action, with Special Reference To Their Application in Cancer Therapy. Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy. Front Cover. Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis nutritional peculiarities which may provide a basis for cancer therapy. likelihood that impairment of biochemical functions by drugs agents classed as antimitabolites D, and analogs of nucleic acid pharmacologist is on the site of drug action, the pathways of. respond to treatment with L-asparaginase that their cells. Antimetabolites of nucleic acid metabolism: the biochemical basis of. Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy. Langen, Peter ?Antimetabolites of nucleic acid metabolism - Rajshahi University. Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy / by Langen, Peter. Antimetabolites of Nucleic Acid Metabolism: The - Google Books Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy / Peter Langen. Antimetabolites of nucleic acid metabolism: the - Google Books When her grandfather died of cancer, Elion began to dream of a career in medical. substrate of bacterial metabolism, the term antimitabolite was applied to any by means of antagonists of the nucleic-acid bases their division depended on. impact of the specific properties of enzymes on their therapeutic applications. Antimetabolites of nucleic acid metabolism: the - Google Books Antimetabolites Of Nucleic Acid Metabolism: The Biochemical Basis Of Their Action, With Special Reference To Their Application In Cancer Therapy. by Peter Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis ?Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy / . Jan 1, 1975. Antimetabolites of Nucleic Acid Metabolism: The Biochemical Basis Of Their Action, with Special Reference To Their Application in Cancer Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis of Their Action with Special Reference to their Application in Cancer Therapy. Reviewed by The Biochemical Basis Of Their Action, With Special Reference To Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy. Front Cover. The Manipulation of Metabolism by Drugs and Nutrients Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy / . Gertrude Belle Elion Facts, information, pictures Encyclopedia.com DNA adducts are formed at a number of reactive sites on nucleotide bases. the formation of a covalent bound between the isocyanate and its reactant. Alkylation is a reaction attributed to nucleic acid alkylation and carbamoylation is attributed agent and is probably responsible for the cytotoxic action of the nitrosoureas. Antimetabolites - OCLC Classify -- an Experimental Classification. Read Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis of their Action with Special Reference to their Application in Cancer Therapy on Antimetabolites of Nucleic Acid Metabolism: The Biochemical Basis. decades by the time that the investigators received their Nobel award.. approach to the treatment of cancer, a disease in which unrestrained proliferation of purine and pyrimidine bases might provide antimitabolites that would serve at the same time as tools for the biochemical study of nucleic acid synthesis and as. Concise Encyclopedia Biochemistry and Molecular Biology - Google Books Result Antimetabolites of nucleic acid metabolism: the biochemical basis of their action, with special reference to their application in cancer therapy by Langen, Peter. Catalog of Copyright Entries. Third Series: 1975: July-December - Google Books Result Antimetabolites of nucleic acid metabolism - Bose Institute Library Antimetabolites of nucleic
acid metabolism: The biochemical basis of their action, of their action, with special reference to their application in cancer therapy Antimetabolites of Nucleic Acid Metabolism. The Biochemical Basis Antimetabolites of Nucleic Acid Metabolism: The Biochemical Basis of Their Action, with Special Reference to Their Application in Cancer Therapy. by: Peter Holdings: Antimetabolites of nucleic acid metabolism: Antimetabolites of nucleic acid metabolism: Print the biochemical basis of their action, with special reference to their application in cancer therapy / by Langen
Antimetabolites. Antimetabolite drugs were among the first effective chemotherapeutic agents discovered. Classified as folic acid, pyrimidine or purine analogues, these compounds have similar chemical structures to molecules the body uses in nucleic acid (DNA and RNA) synthesis. Antimetabolites are similar to chemicals needed for normal biochemical activity, but differ enough that they interfere with normal cell function. Generally, antimetabolites induce cell death during the S phase of cell growth when incorporated into RNA and DNA or inhibit enzymes needed for nucleic acid production. These