SYMMEETRY IN PHYSICS

VOLUME 1:
PRINCIPLES AND SIMPLE APPLICATIONS

J. P. ELLIOTT and P. G. DAWBER

School of Mathematical and Physical Sciences
University of Sussex, Brighton

OXFORD UNIVERSITY PRESS
New York
Contents of Volume 1

Preface xvii

1 Introduction 1
 1.1 The place of symmetry in physics 1
 1.2 Examples of the consequences of symmetry 3
 1.2.1 One particle in one dimension (classical) 3
 1.2.2 One particle in two dimensions (classical) 3
 1.2.3 Two particles connected by springs (classical) 4
 1.2.4 One particle in three dimensions using quantum mechanics—spherical symmetry and degeneracies 5
 1.2.5 One particle in one dimension using quantum mechanics—parity and selection rules 6
 1.2.6 The search for symmetry—elementary particle physics 7
 1.3 Summary 8

2 Groups and Group Properties 9
 2.1 Definition of a group 9
 2.2 Examples of groups 11
 2.3 Isomorphism 16
 2.4 Subgroups 17
 2.5 The direct product group 17
Contents

2.6 Conjugate elements and classes 18
2.7 Examples of classes 19
 2.7.1 The rotation group \mathcal{R}_3 19
 2.7.2 The finite group of rotations D_3 20
 2.7.3 The symmetric group S_3 21
2.8 The class structure of product groups 21
2.9 The group rearrangement theorem 22

Bibliography 22

Problems 22

3 Linear Algebra and Vector Spaces 24
3.1 Linear vector space 25
3.2 Examples of linear vector spaces 27
 3.2.1 Displacements in three dimensions 27
 3.2.2 Displacement of a set of N particles in three dimensions 27
 3.2.3 Function spaces 28
 3.2.4 Function space with finite dimension 29
 3.2.5 Wave functions 29
3.3 Linear operators 30
3.4 The multiplication, inverse and transformation of operators 32
3.5 The adjoint of an operator—unitary and Hermitian operators 34
3.6 The eigenvalue problem 35
3.7 Induced transformation of functions 36
3.8 Examples of linear operators 38
 3.8.1 Rotation of vectors in the xy-plane 38
 3.8.2 Permutations 39
 3.8.3 Multiplication by a function in function space 39
 3.8.4 Differentiation in function space 40
 3.8.5 Induced transformation of functions 40
 3.8.6 Further example of induced transformation of functions 41
 3.8.7 Transformed operator 41

Bibliography 42

Problems 42

4 Group Representations 43
4.1 Definition of a group representation 43
4.2 Matrix representations 44
4.3 Examples of representations 45
 4.3.1 The group D_3 45
 4.3.2 The group S_3 46
 4.3.3 Function spaces 47
4.4 The generation of an invariant subspace 48
4.5 Irreducibility 50
4.6 Equivalent representations 52
Contents

4.6.1 Proof of Maschke's theorem 53
4.7 Inequivalent irreducible representations 54
4.8 Orthogonality properties of irreducible representations 54
 4.8.1 Proof of Schur's first lemma 58
 4.8.2 Proof of Schur's second lemma 60
4.9 Characters of representations 60
4.10 Orthogonality relation for characters of irreducible representations 61
4.11 Use of group characters in reducing a representation 62
4.12 A criterion for irreducibility 63
4.13 How many inequivalent irreducible representations?—the regular representation 64
4.14 The second orthogonality relation for group characters 66
4.15 Construction of the character table 67
4.16 Orthogonality of basis functions for irreducible representations 68
4.17 The direct product of two representations 70
4.18 Reduction of an irreducible representation on restriction to a subgroup 73
4.19 Projection operators 74
4.20 Irreducible sets of operators and the Wigner–Eckart theorem 78
4.21 Representations of direct product groups 81
Bibliography 83
Problems 83

5 Symmetry in Quantum Mechanics 85
5.1 Brief review of the framework of quantum mechanics 85
5.2 Definition of symmetry in a quantum system 89
5.3 Degeneracy and the labelling of energies and eigenfunctions 90
5.4 Selection rules and matrix elements of operators 91
5.5 Conservation laws 92
5.6 Examples 93
 5.6.1 Symmetry group \(C_3 \) 93
 5.6.2 Symmetry group \(D_3 \) 95
 5.6.3 Symmetry group \(S_2 \) 96
 5.6.4 Symmetry group \(\mathbb{Z}_3 \) 96
5.7 Use of group theory in a variational approximation 97
5.8 Symmetry-breaking perturbations 99
 5.8.1 Examples 100
 5.8.2 Magnitude of the splitting 101
5.9 The indistinguishability of particles 102
5.10 Complex conjugation and time-reversal
Bibliography 104
Problems 104

6 Molecular Vibrations 106
Contents

6

6.1 The harmonic approximation 107
6.2 Classical solution 108
6.3 Quantum mechanical solution 109
6.4 Effects of symmetry in molecular vibrations 110
6.5 Classification of the normal modes 113
6.5.1 The water molecule 115
6.5.2 The ammonia molecule 116
6.6 Vibrational energy levels and wave functions 117
6.7 Infrared and Raman absorption spectra of molecules 120
6.7.1 Infrared spectra 120
6.7.2 Raman spectra 121
6.8 Displacement patterns and frequencies of the normal modes 122

Bibliography 124

Problems 124

7

7 Continuous Groups and their Representations, Including Details of the Rotation Groups \(\mathbb{R}_2 \) and \(\mathbb{R}_3 \) 125
7.1 General remarks 126
7.2 Infinitesimal operators 127
7.3 The group \(\mathbb{R}_2 \) 130
7.3.1 Irreducible representations 131
7.3.2 Character 131
7.3.3 Multiplication of representations 132
7.3.4 Examples of basis vectors 132
7.3.5 Infinitesimal operators 133
7.4 The group \(\mathbb{R}_3 \) 134
7.4.1 Infinitesimal operators 135
7.4.2 Irreducible representations 137
7.4.3 Characters 140
7.4.4 Multiplication of representations 141
7.4.5 Examples of basis vectors 143
7.4.6 Irreducible sets of operators and the Wigner–Eckart theorem 146
7.4.7 Equivalent operators 147
7.5 The Casimir operator 148
7.6 Double-valued representations 150
7.7 The complex conjugate representation 153

Bibliography 153

Problems 154

8

8 Angular Momentum and the Group \(\mathbb{R}_3 \) with Illustrations from Atomic Structure 156
8.1 Rotational invariance and its consequences 156
8.2 Orbital angular momentum of a system of particles 158
8.3 Coupling of angular momenta 159
8.4 Intrinsic spin 161
8.5 The hydrogen atom 166
Contents

8.6 The structure of many-electron atoms 170
 8.6.1 The Hamiltonian 170
 8.6.2 The Pauli principle and shell filling 171
 8.6.3 Atoms with more than one valence electron: \(LS\) coupling 173
 8.6.4 Classification of terms 176
 8.6.5 Ordering of terms 179

Bibliography 181

Problems 181

9 Point Groups with an Application to Crystal Fields 183
 9.1 Point-group operations and notation 184
 9.2 The stereogram 184
 9.3 Enumeration of the point groups 186
 9.3.1 Proper groups 186
 9.3.2 Improper groups 191
 9.4 The class structure of the point groups 192
 9.4.1 Proper point groups 193
 9.4.2 Improper point groups 193
 9.5 The crystallographic point groups 196
 9.6 Irreducible representations for the point groups 197
 9.7 Double-valued representations of the point groups 199
 9.8 Time-reversal and magnetic point groups 201
 9.9 Crystal field splitting of atomic energy levels 202
 9.9.1 Definition of the physical problem 202
 9.9.2 Deduction of the manner of splitting from symmetry considerations 204
 9.9.3 Effect of a magnetic field 209

Bibliography 210

Problems 211

10 Isospin and the Group \(SU_2\) 213
 10.1 Isospin in nuclei 214
 10.1.1 Isospin labelling and degeneracies 215
 10.1.2 Splitting of an isospin multiplet 218
 10.1.3 Selection rules 221
 10.2 Isospin in elementary particles 222
 10.2.1 Collisions of \(\pi\)-mesons with nucleons 223
 10.3 Isospin symmetry and charge-independence 223

Bibliography 224

Problems 224

11 The Group \(SU_3\) with Applications to Elementary Particles 226
 11.1 Compilation of some relevant data 227
 11.2 The hypercharge 230
 11.3 Baryon number 231
 11.4 The group \(SU_3\) 232
 11.5 Subgroups of \(SU_3\) 233
Contents

11.6 Irreducible representations of SU_3
11.6.1 Complex conjugate representations
11.6.2 Multiplication of representations
11.7 Classification of the hadrons into SU_3 multiplets
11.8 The mass-splitting formula
11.9 Electromagnetic effects
11.10 Casimir operators
Bibliography
Problems

12 Supermultiplets in Nuclei and Elementary Particles—the Groups SU_4 and SU_6 and Quark Models
12.1 Supermultiplets in nuclei
12.2 Supermultiplets of elementary particles
12.3 The three-quark model
12.4 The nine-quark model
12.5 Charm
Addendum (mid-1978)
Addendum (late 1983)
Bibliography
Problems

Appendix 1 Character Tables for the Irreducible Representations of the Point Groups
Appendix 2 Solutions to Problems in Volume 1

Index to Volumes 1 and 2 (adjacent to p. 280)

Contents of Volume 2

Preface xvii

13 Electron States in Molecules 281
 13.1 Linear combinations of atomic orbitals (LCAO) 282
 13.2 Examples 284
 13.3 Selection rules for electronic excitations in molecule: 287
 Bibliography 288
 Problems 288

14 Symmetry in Crystalline Solids 289
 14.1 Translational symmetry in crystals 289
 14.2 The translation group \(\mathcal{F}(\alpha_1, \alpha_2, \alpha_3) \) 290
 14.3 The Brillouin zone and some examples 293
 14.4 Electron states in a periodic potential 294
 14.4.1 The nearly-free electron model 295
 14.4.2 Metals and insulators 299
 14.4.3 The tight-binding method 302
 14.5 Lattice vibrations 306
 14.5.1 The one-dimensional monatomic lattice 306
 14.5.2 Three-dimensional crystals with several atoms per unit cell 309
 14.6 Spin waves in ferromagnets 311
Contents

14.7 Excitons in insulators (Frenkel excitons) 313
14.8 Selection rules for scattering 314
14.9 Space groups 315
 14.9.1 Irreducible representations of space groups 316
 14.9.2 Application to electron states 320
 14.9.3 Other excitations 323
Bibliography 323
Problems 324

15 Space and Time 325
15.1 The Euclidean group E_3 326
 15.1.1 Translations 326
 15.1.2 The group operators 328
 15.1.3 The irreducible representations 328
 15.1.4 The group E_2 331
 15.1.5 The physical significance of the Euclidean group E_3 331
 15.1.6 Scalar products and normalisation of basis vectors 333

15.2 The Lorentz group L 334
 15.2.1 The Lorentz transformation 335
 15.2.2 The regions of space–time 339
 15.2.3 Physical interpretation of the Lorentz transformation 340
 15.2.4 Infinitesimal operators 343
 15.2.5. The irreducible representations 344

15.3 The Lorentz group with space inversions L' 347

15.4 Translations and the Poincaré group P 349
 15.4.1 Translations in space–time 349
 15.4.2 The Poincaré group and its representations 351
 15.4.3 Casimir operators 356
 15.4.4 Definition of scalar product 359

15.5 The Poincaré group with space inversions P' 360
15.6 The Poincaré group with time inversion P_x 362
15.7 Physical interpretation of the irreducible representations of the Poincaré group 363
 15.7.1 Mass 364
 15.7.2 Spin 366
 15.7.3 Parity 368
 15.7.4 Time-reversal 369
 15.7.5 Some consequences of time-reversal symmetry 373

15.8 Single-particle wave functions and the wave equations 375
 15.8.1 The group E_2 376
 15.8.2 The group E_3 377
 15.8.3 The Poincaré group with $s = 0$—the Klein–Gordon equation 379
 15.8.4 The Poincaré group with $s = \frac{1}{2}$—the Dirac equation 380
Contents

18.1 The irreducible representations of U_N 453
18.2 Some examples 456
18.3 The chain of subgroups $U_N \rightarrow U_{N-1} \rightarrow U_{N-2} \rightarrow \ldots \rightarrow U_2 \rightarrow U_1$ 457
18.4 A labelling system for the basis vectors 459
18.5 The direct product of representations of U_N 461
18.6 The restriction from U_N to its subgroup SU_N 462
18.7 The special cases of SU_2, SU_3 and SU_4 464
18.8 The infinitesimal operators of U_N 466
18.9 The complex conjugate representations of U_N and SU_N 467
18.10 The use of the group U_N in classifying many-particle wave functions 469
 18.10.1 The use of subgroups of U_N 471
18.11 Characters 475
18.12 Group integration and orthogonality 476
18.13 The groups SU_2 and SU_3 478
 18.13.1 The parameters of SU_2 478
 18.13.2 Infinitesimal operators and irreducible representations of SU_2 480
 18.13.3 Connection between the groups SU_3 and SU_2 480
 18.13.4 Explicit formula for the parameters of a product of rotations 482
 18.13.5 Examples of SU_2 basis vectors 482
Bibliography 483

Problems 483

19 Two Familiar 'Accidental' Degeneracies—the Oscillator and Coulomb Potentials 485
19.1 The three-dimensional harmonic oscillator for one particle 486
19.2 The three-dimensional harmonic oscillator for many particles 491
19.3 The harmonic oscillator in n dimensions 492
19.4 The symmetry group of the Coulomb potential 492
 19.4.1 The groups R_4 and Z_2 494
 19.4.2 The classification of states of the Coulomb potential 495
Bibliography 496

Problems 497

20 A Miscellany 498
20.1 Non-invariance groups 498
20.2 The Jahn–Teller effect and spontaneously broken symmetries 502
 20.2.1 The adiabatic approximation 502
 20.2.2 The role of symmetry 503
 20.2.3 Spontaneous symmetry breaking 505
20.3 Normal subgroups, semi-direct products and little groups 507
Contents

20.4 The classification of Lie groups 510
20.5 The rotation matrices 519
Bibliography 522
Problems 523

Appendix 3 Topics in Representation Theory 524
A.3.1 Symmetrised products of representations 524
A.3.2 Use of a subgroup in reducing product representations 527
A.3.3 Class multiplication 529
Appendix 4 Some Results Pertaining to the Group \mathfrak{g}_3 531
A.4.1 An integral over three spherical harmonics 531
A.4.2 The spherical harmonic addition theorem 532
A.4.3 Group integration 533
Appendix 5 Techniques in Atomic Structure Calculations 539
A.5.1 Term energies for p^2 and p^3 configurations 539
A.5.2 Recoupling coefficients ($6j$- and $9j$- symbols) 543
A.5.3 Transition strengths 547
A.5.4 The crystal field potential 549
A.5.5 Use of symmetry to deduce ratios of splittings 550
Problems on appendices 4 and 5 553
Appendix 6 Solutions to Problems in Volume 2 555

Index to Volumes 1 and 2 (adjacent to p. 558) 1
Preface to Volume 1

One cannot study any physical system for very long before finding regularities or symmetries which demand explanation and, even though the system may be complex, one expects that the regularities will have a simple explanation. This basic optimism, which pervades not only physics but science in general, is justified in the case of symmetries because there is a theory of symmetry which has application in almost all branches of physics and especially in quantum physics. The object of our book is to describe the theory of symmetry and to study its applications in a wide variety of physical systems.

The book has grown out of several lecture courses which we have given at the University of Sussex during the past ten years. One was a general introductory course on symmetry given to third-year undergraduates, one a postgraduate course on symmetry in solid-state physics and one a postgraduate course on symmetry in atomic, nuclear and elementary-particle physics. As a result, the book may be used by students in any of these categories. We regard chapters 1–5 (inclusive) as a minimum selection for any student wishing to study symmetry, although those students who have taken an undergraduate course on linear algebra will find that much of chapter 3 is familiar and may be read quite rapidly. The remaining chapters 6–11 in volume I cover a wide range of applications which is quite sufficient for an undergraduate course. One could even be selective within the first volume by omitting chapters 10–12 on nuclear and elementary particle physics or
alternatively by omitting chapters 6 and 9 on the point groups. We would expect the second volume to be used for serious study at the postgraduate level and for occasional reference by the more inquisitive undergraduate.

The first chapter of volume I introduces the concept of symmetry with some very simple examples and lists the general consequences. We then leave physics aside for three chapters while preparing the mathematical tools to be used later. The most important of these are group theory and linear algebra which are described in chapters 2 and 3. The fourth chapter brings together these two ideas in a study of group representations and it is this aspect of group theory which is most used in the theory of symmetry. We return to physics in chapter 5 with a brief summary of the basic ideas of quantum mechanics and a general description of the effects of symmetry in quantum systems. The remainder of the book is concerned with applications to different physical systems and the study in greater detail of the relevant groups. We cover a broad range of applications from molecular vibrations to elementary particles and in each case we aim to introduce sufficient background description to enable the reader who has no prior knowledge of that particular physical system to appreciate the role being played by symmetry. Each application is reasonably self-contained and the more sophisticated systems are left until the later chapters. The vibration of molecules is the first phenomenon studied in detail, in chapter 6, and here we are able to illustrate the results of symmetry in classical mechanics before going over to the quantised theory. Chapters 7 and 8 describe the symmetry with respect to rotations with applications to the structure of atoms. It is here that we meet for the first time a continuous group, with an infinite number of elements, or symmetry operations, and the general properties of such groups are described. Chapter 9 describes in some detail the 'point groups', which contain only a finite number of rotations, and uses them to study the influence of a crystal field on atomic states. In chapters 10, 11 and 12 we move on to the more abstract symmetries encountered in nuclear and elementary particle physics but make use of the same general theory that was used for the more concrete applications in earlier chapters. We introduce the groups of unitary transformations in two, three, four and six dimensions and use them to describe the observed symmetry between neutrons and protons and the regularities amongst some of the recently discovered short-lived elementary particles. The ideas of 'strangeness' and 'quarks' are explained.

Volume 2 begins with a further application of the use of 'point groups'—to the motion of electrons in a molecule—and then, in chapter 14, moves away from symmetries with a fixed point to study discrete translations and their applications to crystal structure. The theory of relativity is of profound importance in the philosophy of physics and, when speeds become comparable with that of light, it has practical importance. For all the systems discussed in volume 1 we are able to ignore relativity because the speeds of the particles involved are sufficiently small. Chapter 15 describes the symmetry in four-dimensional space-time which is the origin of relativity theory and discusses its consequences, especially in relation to the classification of elementary
Preface

Particles. The concepts of momentum, energy, mass and spin are interpreted in terms of symmetry using the Lorentz and Poincaré groups and a natural place is found in the theory for particles, like the photon, with zero mass. Chapter 16 is concerned with fields, in contrast to the earlier chapters which dealt with particles or systems of particles. We first describe classical fields, such as the electromagnetic field, using four-dimensional space-time. This is followed by a brief account of the theory of relativistic quantum fields which provides a framework for the creation and annihilation of particles and the existence of antiparticles. Chapters 17 and 18 contain details of two general groups, the 'symmetric' group of all permutations of \(n \) objects and the 'unitary' group in \(N \) dimensions, and an intimate relation between these two groups is discussed. Particular cases of these two groups have been met earlier. Chapter 19 describes some unexpected symmetries in two familiar potentials, the Coulomb and the harmonic oscillator potentials, and a number of small, unconnected, but interesting topics are collected into the last chapter.

The text includes worked examples and a selection of problems with solutions. A bibliography of references for further reading is given at the end of each chapter for those who wish either to follow the physical applications into more detail or to study some of the mathematical questions to a greater depth.

To aid the reader we have followed the standard convention of using italic type for algebraic symbols such as \(x, y \) and \(z \), whereas operators are distinguished by the use of roman type. An operator or matrix will be written \(T \) but its matrix elements \(T_{ij} \), which are numbers, will be in italic type. In addition, bold face type will be used for vectors and in chapters 15 and 16 of volume 2 we meet four-vectors \(\mathbf{a} \) which are printed with a circumflex.

Brighton, Sussex, 1979

J. P. E.

G. D.
Introduction

1.1 The place of symmetry in physics

According to the Concise Oxford Dictionary, symmetry is defined as ' Beau ty resulting from) right proportion between the parts of the body or any whole, balance, congruity, harmony, keeping'. Although there is much complex detail in physics there is also much beauty and simplicity and it is the symmetry in physical laws and physical systems which is largely responsible for this. Consequently, symmetry plays an important role in physics and one which is increasing in importance with modern developments. It is the purpose of this book to explain in general terms why the existence of symmetry leads to a variety of physical simplicities in both classical and quantum mechanics. To illustrate the general results we shall refer to simple properties of molecules, crystals, atoms, nuclei and elementary particles. Although these physical systems are so obviously different from one another, nevertheless the same theory of symmetry may be applied to them all. The study of symmetry, therefore, helps to unify physics by emphasising the similarities between different fields.

It is true that symmetry plays a part in both classical and quantum physics, but it is in the latter that most interest lies. There are several reasons for this. The first is that there is a much greater scope for symmetry to exist in the microscopic domain since, for example, one electron is identical with any other
Introduction

1.1

electron and one atom of carbon (say) is identical with any other. The second reason is that at the microscopic level one must use quantum mechanics which is inherently more complicated than classical mechanics and so provides more scope for simplification through symmetry arguments. For example, a particle is described by a wave function rather than a single position. One further reason is that the structure of atomic and subatomic systems is now one of the exciting frontiers of science and the ideas of symmetry are helping to create order out of apparent chaos.

Throughout physics one uses mathematics as the tool with which to investigate the consequences of some assumed theory or model. For example, in the motion of a particle of mass M in one dimension x under some force $f(x)$ the physical law (Newtonian theory) tells us that $f(x) = M(d^2x/dt^2)$. To find the position $x(t)$, as a function of time, given $f(x)$, we must solve this differential equation, putting in the initial values of x and dx/dt. Thus, in Newtonian mechanics, the differential and integral calculus is the appropriate tool. In studying the symmetry of physical systems we are asking about their behaviour under transformations. For example, if a particle moves in one dimension under the influence of a potential $V(x)$, that potential may have reflection symmetry in the origin, i.e. $V(-x) = V(x)$. In this case the potential is said to be invariant (unchanged) under the transformation which replaces x by $-x$. In another example, that of a particle moving in three dimensions, the potential may have spherical symmetry, which means that, in spherical polar coordinates, the potential is independent of angle and may be written $V(r)$. In this case the potential is invariant under any of the transformations which rotate through any angle about any axis through the origin—an infinite number of transformations!

To investigate the physical consequences of the symmetry of a system we must, therefore, learn something about transformations and in particular about the set (collection) of transformations which leave some function, like the potential, invariant. The theory of such sets of transformations is called ‘group theory’ by mathematicians and this is the appropriate tool for the physicist to use in studying symmetry.

It is fascinating to draw an analogy between the use of calculus in classical mechanics and the use of group theory in quantum mechanics. Historically the discovery of Newton's laws and the invention of the calculus occurred at about the same time in the seventeenth century. Although the ideas of group theory were introduced into mathematics as early as 1810 it was not until the 1920s that the theory of group representations, which is crucial to the study of symmetry, was developed. This was the very time when physicists were formulating the quantum theory. In fact the significance of symmetry in quantum mechanics was realised very early in the classic works of E. Wigner, in 1931, H. Weyl, in 1928, and Van-der-Waerden, in 1932.

There have always been those who have argued that it is unnecessary to use group theory in quantum mechanics. In a sense this is true, since group theory itself is built from elementary algebraic steps. However, the investment of
1.2 Introduction

effort in learning to use the sophisticated tool which is group theory is soon
rewarded by handsome dividends of simplification and unification in the study
of complex quantum mechanical systems. After all, one could argue that the
calculus is not necessary in classical mechanics. For example, geometrical
arguments could be used to show that the inverse square law of gravitational
attraction leads to elliptical orbits. In fact, Newton originally used such a
method but in modern times we understand this result through the solution
of a differential equation. Looking ahead, it is exciting to speculate that
further major advances in mathematics and physics may go hand in hand in
the future.

1.2 Examples of the consequences of symmetry

To whet the appetite we now list a number of physical systems which possess
symmetry and we point out some features of their behaviour which are direct
consequences of the symmetry. Simpler examples are given first. Although in
some cases we are able to relate the behaviour to the symmetry without
developing new methods this is, of course, not always possible. It is the purpose
of this book to describe generally the consequences of symmetry and it will not
be until much later in the book that we shall be in a position to understand and
to predict the behaviour of systems with intricate symmetries.

1.2.1 One particle in one dimension (classical)

A particle of mass \(M \), moving in one dimension under the influence of a
potential \(V(x) \), will have its motion governed by the equation

\[
M \ddot{x} = -\frac{dV}{dx}
\]

(1.1)

Suppose now that \(V(x) \) is a constant, independent of \(x \); in other words that it is
invariant under translation. Then clearly \(M \ddot{x} = 0 \) and, integrating, gives \(M \dot{x} = C \), showing the conservation (constancy) of linear momentum \(M \dot{x} \).

1.2.2 One particle in two dimensions (classical)

In two dimensions the motion of the particle is governed by the two equations

\[
M \ddot{x} = -\frac{\partial V}{\partial x} \quad \text{and} \quad M \ddot{y} = -\frac{\partial V}{\partial y}
\]

(1.2)

Suppose now that \(V(x, y) \) is invariant with respect to rotation about the origin;
in other words that \(V(x, y) \) is independent of the polar angle \(\theta \) if expressed in
terms of the polar coordinates \(r, \theta \) rather than the cartesian \(x \) and \(y \). In this case
\(\frac{\partial V}{\partial \theta} = 0 \). However,

\[
\frac{\partial V}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial V}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial V}{\partial y} = -\frac{\partial V}{\partial x} + x \frac{\partial V}{\partial y}
\]
and using equation (1.2)

\[\frac{\partial V}{\partial \theta} = M(\dot{y} \dot{x} - \dot{x} \dot{y}) = M \frac{d}{dt}(y \dot{x} - x \dot{y}) \]

so that the invariance \(\partial V/\partial \theta = 0 \) implies the constancy of the quantity \(M(y \dot{x} - x \dot{y}) \) which is the moment of momentum (or angular momentum) about an axis through the origin and perpendicular to the plane.

If the particle were free to move in three dimensions in a potential which was invariant with respect to rotations about any axis then this argument shows that any component of the angular momentum is constant. In other words, for a spherically symmetric potential, both the magnitude and the direction of the angular momentum are conserved.

1.2.3 Two particles connected by springs (classical)

Two particles of equal mass \(M \) are connected to each other and to fixed supports by equal collinear springs with spring constant \(\lambda \). Let the natural length of the springs be \(a \) and the supports a distance \(3a \) apart. Denote the displacements of the two particles from their equilibrium positions by \(x_1 \) and \(x_2 \). Although the general displacement, illustrated in figure 1.1, has no

![Figure 1.1](image)

symmetry it is intuitively clear that, in some sense, the system has reflection symmetry about the centre. In fact, both the kinetic and potential energies

\[T = \frac{1}{2} M(x_1^2 + x_2^2) \quad \text{and} \quad V = \frac{1}{2} \lambda \{x_1^2 + x_2^2 + (x_1 + x_2)^2\} \]

are invariant with respect to the interchange of \(x_1 \) and \(x_2 \), which is the transformation of coordinates \(x_1 \) and \(x_2 \) produced by a reflection in the line AB.

The consequences of symmetry are not very dramatic in this case, but the generalisation to the vibration of atoms about their equilibrium positions in a molecule is of considerable importance. It is therefore worth while to solve
In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by