and biology of transplanted stem cells in the living subject. Recent advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. The ideal imaging method should provide the information of (1) Real-time visualization of stem cell delivery; and (2) Determination of location(s) and Quantification of cells over time. The chosen labeling modality should not interact with the normal functions of the stem cell and provides a good contrast between background and the target signal under study, achieving a large signal-to-noise ratio. Reporter gene-bioluminescence imaging (BLI) is based on light emission and detection by specific cooled charge coupled device (CCD) cameras. Similar to other reporter gene strategies, the BLI signal is only emitted when cells are viable, and thus can be used for the longitudinal monitoring of stem cell survival and study of cell status. BLI has been successfully used for in vivo study of cell delivery and monitoring of stem cell viability, fate, interaction between stem cells and microenvironments in small living animals. We have investigated the distribution of systemically delivered luciferase labeled MSCs in fracture animal model and tumor bearing animals. The whereabouts of the labelled stem cells are monitored using the in vivo imaging system (IVIS 200, Exogen, USA), and accessed the efficiency of using stem cells therapy for promoting fracture repair (Fig. 1) and anti-cancer gene therapy.

Fig. 1. Allogenic Luc-MSCs were injected into the fracture site in mice, and were monitored using in vivo imaging system. Allogenic MSCs became undetectable 14 days after injection. All animals did not show obvious adverse side effects.

Brief CV
Research Area(s): Stem cell biology and musculoskeletal tissue engineering
Technical Expertise: Circulating MSCs; stem cell gene therapy
Email: ganglioc@hku.edu.hk

UPDATE ON OPTICAL IMAGING DEVELOPED FOR PRECLINICAL STUDIES OF BONE
Claus-C. Glüer, Jaime Peña, Timo Damm, Reinhard Barkmann, Graeme Campbell
Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, UKSH, Christian-Albrechts-Universität zu Kiel, Germany

Optical imaging techniques are among the most powerful techniques in preclinical research, specifically for the imaging of rodents. It includes (i) methods suited for mesoscopic (spatial resolution of about 1 mm) whole body non-invasive imaging, specifically fluorescent and bioluminescent imaging, (ii) microscopic techniques, most notably multiphoton and confocal microscopy, and (iii) spectroscopic approaches such as Raman and Fourier Transform Infrared imaging and mass spectroscopy imaging. A key reason for the attractiveness of optical imaging is the possibility to exploit the extremely powerful methods of genetic engineering. For example, transgenic mouse models can be generated that feature near infrared reporter signals associated with specific gene expression. By this mechanism of molecular imaging, morphologic imaging can be extended to in vivo functional imaging.

Optical imaging of bone is feasible but presents specific hurdles to date have only partially been overcome. Light is strongly scattered and absorbed leading to strong attenuation and resulting limits in spatial resolution, decreasing rapidly with increasing depth. This also leads to bias in the quantitative evaluation of optical signals. On the positive side, due to the strong bone binding properties of bisphosphonates, bone labeling molecules have been developed. These bind to mineral on bone surface and permit in vivo insight into bone turnover. In this way, they work similar to serum markers of bone turnover, but they provide this information in a spatially resolved way, including 3-D depiction using fluorescent molecular tomography (FMT).

Ex vivo optical imaging provides powerful assessment tools specifically for the organic components of bone tissue. Second harmonic generation (SHG) is a contrast mechanism of multiphoton microscopy specific to collagen. Mineral to matrix ratios and subtype analysis of collagen is feasible with the aforementioned spectroscopic imaging approaches, promising to help elucidating bone fragility in secondary osteoporosis and other disorders, e.g. effects of diabetes on bone.

The goals for research in the coming years include the refinement of these methods, the linking of mesoscopic with microscopy techniques in order to obtain a comprehensive assessment of as many dimensions of bone quality as possible, the in vivo assessment of bone function down to the cellular level, in order to improve the assessment of bone metabolism and other skeletal disorders.

Brief CV
Research Area(s): Preclinical and clinical imaging of bone metabolism, bone fragility, and bone metastases
Technical Expertise: QCT, QUS, molecular imaging, statistics
Email: glueer@rad.uni-kiel.de
Website: www.moincc.de

Dr. Claus-C. Glüer is a Professor of Medical Physics at the Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein in Kiel, Christian-Albrechts-Universität zu Kiel, Germany. His research is aimed at the development of innovative parametric imaging techniques and their quantitative evaluation. Since 1987 when he started his postdoc in the Osteoporosis Research Group of Prof. Harry K. Gennant at the University of California, San Francisco, Dr Glüer has focused his research on osteoporosis and other bone disorders. He has contributed specifically to the development of bone densitometry, quantitative ultrasound and high resolution computed tomography approaches. He has coordinated several multicentre studies including OPUS, a European project on epidemiology and optimised diagnostic assessment of osteoporosis.

Dr. Glüer also has a strong research interest in multimodal methods for molecular imaging with applications in oncology, inflammation, and skeletal research. He co-founded the Molecular Imaging North Competence Center (MOIN CC) at the Christian-Albrechts-Universität zu Kiel, a preclinical imaging lab. At MOIN CC, multi modal Imaging studies combining micro computed tomography, high-field magnetic resonance imaging, high resolution ultrasound, fluorescence and bioluminescence imaging can be carried out to study morphological, functional, cellular, and molecular processes in health and disease and to assess therapeutic effects.

Dr. Glüer is the current president of the German Society for Osteology (DGO), past president of the German Academy of Bone & Joint Sciences (DADoW) and President of the European Calcified Tissue Society. He has published more than 175 original papers, 20 books and book chapters, and holds 3 patents

MUSCULOSKELETAL IMAGING TECHNOLOGIES IN R&D OF 3D BONE COMPOSITE SCAFFOLD BIOMATERIALS
Ling Qin, a,b
a Musculoskeletal Research Lab, Dept of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
b Translational Medicine Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, PR, China
Osteoporotic fractures are associated with considerable morbidity and mortality, and the use of 3D high resolution imaging has offered new opportunities to learn about bone quality that may help in the development of novel treatments and diagnostic techniques aimed at improving bone health. The advent of high-resolution peripheral quantitative computed tomography scanners (HR-pQCT, XtremeCT, Scanco Medical) a decade ago opened new opportunities to investigate natural changes in bone quality with aging, the effects of treatments on the underlying bone microarchitecture, and the ability to apply techniques such as the finite element analysis to non-invasively assess bone strength. In the past year, a new version of HR-pQCT has become available (XtremeCTII) which further advances the potential to assess bone quality.

In this work we present our population-based cohort that has been a major focus of our laboratory over the past decade. We have previously established the age-related changes in bone microarchitecture based on a cross-sectional study design recently, and here we begin to explore the longitudinal analysis of that same population, and use that information to understand the true individual age-related changes in bone architecture. With the newfound ability to measure at a 61 μm voxel size (Fig. 1), we explore the challenges of having a continuity of research studies that will span two generations of these systems. Specially, we will address the major issues that need to be resolved so that the wealth of longitudinal data collected by all users of HR-pQCT can be effectively continued. Also, we explore the ability to apply advanced analysis methods to the new technology, including both the finite element method and direct measures of bone microarchitecture. Finally, we will demonstrate the potential to being studying bone quality for other research applications, such as the periarticular bone quality at the knee and elbow, which is important for learning about diseases such as osteoarthritis and with implications for total joint replacement. In summary, the introduction of new HR-pQCT technology offers exciting new opportunities for the study of bone quality.
Abstract. Numerous image analysis and thresholding features to define the bone. Following mCT scanning, the scaffolds were demineralized using RDO (APEX Engineering Products Corp, Plainfield, IL). The scaffolds were then embedded in paraffin, sectioned at 7 mm, and stained with hematoxylin and eosin (H&E).

2.6. Mandibular condyle design and fabrication
In order to provide a proof of concept, a minipig condyle scaffold was designed using image-based techniques [45]. A global anatomic design was first created directly from a CT scan of the minipig mandible.