F1.2 Management applications and other classical optimization problems

Volker Nissen

Abstract

In this section an evaluation of the current situation regarding evolutionary algorithms (EAs) in management applications and classical optimization problems is attempted. References are divided into three categories: practical applications in management, application-oriented research in management, and standard optimization problems with relevance beyond the domain of management. Some general observations on the competitiveness of EAs, as compared to other optimization techniques, are also given. Few systematical and large-scale comparisons have appeared in the literature so far, and it is fair to state that a thorough evaluation of the potential of EAs in most of the classical optimization problems is still ahead of us. This is partly due to the lack of suitable benchmark problems, representative for distinct and neatly specified problem classes. Besides, theoretical results also shed a rather critical light on the objectives and current practice of empirical comparisons.

F1.2.1 Introduction

In recent years, new heuristic techniques, some of them inspired by nature, have emerged which have proven successful in solving very diverse hard optimization problems. Evolutionary algorithms (EAs), tabu search (TS), and simulated annealing (SA) are probably the best known classes of these modern heuristics. They share common characteristics. For instance, they tolerate deteriorations of the attained solution quality during the search process to overcome local suboptima in complex search spaces.

In this section, EAs are viewed as stochastic heuristics, applicable to a large variety of complex optimization problems. They are based on the mechanisms of natural evolution, imitating the phenomena of heredity, variation, and selection on an abstract level. The mainstream types of EA are:

- genetic algorithms (GAs)
- genetic programming (GP)
- evolution strategies (ESs)
- evolutionary programming (EP).

In an attempt to structure one important area of applied EA research, this paper gives an overview of EA in management applications, also covering other classical optimization problems with relevance beyond the domain of management. More than 850 references to current as well as finished research projects and practical applications are classified in Appendix B. (The references in this text are collected in a separate reference list, located before the appendices.) Although much effort has been devoted to

† This section is an updated and extended version of Nissen (1993, 1995).
collecting and evaluating as many references as possible, the list cannot be complete. Furthermore, it must be assumed that many applications remain unpublished for reasons of confidentiality. Hence, the results reported in section F1.2.2 might be unintentionally biased. However, it is hoped that others will find the classification of applications and extensive reference list helpful in their own research. Moreover, some general observations on the competitiveness of evolutionary approaches as compared to other paradigms are included in section F1.2.3.

F1.2.2 An overview of evolutionary algorithm applications in management science and other classical optimization problems

F1.2.2.1 Some technical remarks

This overview is mainly based on an evaluation of the literature and information posted to the relevant e-mail discussion lists *Genetic Algorithms Digest* (ga-list-request@aic.nrl.navy.mil), *Evolutionary Programming Digest* (ep-list-request@magenta.me.fau.edu), *Genetic Programming List* (genetic-programming-request@cs.stanford.edu), the EMSS list (dduane@gmu.edu) on evolutionary models in the social sciences, and two other specialized lists on timetabling (ttp-request@cs.nott.ac.uk) and scheduling (gsched-owner@acse.sheffield.ac.uk) with EAs. Additional information was gathered by private communication with fellow researchers, consultants, software developers, and users of EAs in business.

Sometimes it was rather difficult to decide, on the basis of the literature reviewed, whether papers actually discussed a practical application in business (section F1.2.2.2) or ‘just’ application-oriented research (section F1.2.2.3). When only test problems were discussed without reference to a practical project then no immediate practical background was assumed. This also applies to projects using historical real data. Application-oriented research in management, and other classical optimization problems (section F1.2.2.4) are two evaluations that refer to projects not linked to practical applications in business. The section on other classical optimization problems concerns management as well as different (e.g. technical) domains. A well-known example for such a general standard problem with applicability in different domains is the *traveling salesman problem* (TSP).

Multiple publications on the same project count as one application, but all evaluated references are given in the tables of Appendix A and are listed in the extensive bibliography of Appendix B. The year of earliest presentation of an application, as given in the tables, generally refers to the earliest source found, which might be personal communication preceding a publication. In some cases, authors (Koza, Michalewicz) have included all previously published material in easily accessible books or long papers. Here, only the overall references are cited in the reference list.

For the majority of cited references the original papers were available for investigation. In some cases, however, secondary literature had to be used, because it was impossible or too difficult to obtain the original sources. Some additional references may be found in the bibliographies compiled by Alander (1996a, b, c, d) and available through the Internet (ftp://ftp.uwasa.fi.directory.cs/report94-1).

In this section, and particularly in the tables, a unified view on the field of EAs is taken. Even though the GA community is by far the largest, it is probably true that any of the EA mainstream types could be applied to any of the fields discussed here. Generally, a good optimization technique will account for the properties and biases of the problem investigated. The most reasonable solution representation, search operators and selection scheme will, therefore, depend on the problem. In this context, the entire field of EAs may be thought of as some form of toolbox. Whether the result of EA design for a particular problem on the basis of such a toolbox is called a GA, GP, EP or an ES is not really important, and might even be hard to decide. However, in the following overview sections the frequency of certain EA mainstream types will be mentioned for reasons of completeness.

F1.2.2.2 Practical applications in management

An overview of practical management applications is given in table F1.2.1. To date the quantity and diversity of applications is still moderate if one compares with the huge variety of optimization problems faced in management. Besides, many systems referred to in table F1.2.1 must be considered prototypes. Although the information is hard to extract from the given data, the number of running systems actually applied routinely in daily practice is likely to be rather small.

Combinatorial optimization with a focus on scheduling is most frequent. The majority of applications appear in an industrial setting with emphasis on production (figure F1.2.1). This is not surprising, since
production can be viewed as one large and complex optimization task that determines a company’s competitive strength and success in business. Other business functions such as strategic planning, inventory, and marketing have not received much attention from the EA community so far, although some pioneering publications (see also table F1.2.2) have demonstrated the relevance of EAs to these fields.

The financial services sector is usually progressive in its electronic data processing applications, but publications in the scientific press are rather scarce. A focus on credit control and identification of good investment strategies is visible, though. The actual number of EA applications in this sector is likely to be much higher than the figures lead us to believe. This might also hold for management applications in the military sector. In these unpublished applications GAs are the most likely type of EA employed, since their research community is by far the largest.

The energy sector is another prevailing area of application. ESs are quite frequent here, because this class of EAs originated in the engineering field and has traditionally been strong in technical applications. GAs are most frequently applied in practice. Interest in the other EA types is growing, however, so that a rise in the number of their respective applications can be expected in the near future. ESs and EP already cover a range of management-related applications. GP is a very recent technique that has attracted attention mainly from practitioners in the financial sector, while GP researchers are still working to reach the level of practical applicability in other domains.

Some hybrid systems integrating EAs with artificial neural networks, fuzzy set theory, and rule-based systems are documented. Since they are expensive to develop and may yield considerable strategic advantage over competitors, it can be assumed that much work in hybrid systems is kept secret and does not appear in the figures. This also holds for applications developed by commercial EA suppliers, sometimes with the aid of professional and semiprofessional EA tools. The quality of the data suffers from the fact that many authors are not allowed to publish their applications for reasons of confidentiality.

If one considers the publication dates of practical EA applications (figure F1.2.2), a sharp rise in publications since the late 1980s is obvious. This movement can almost solely be attributed to an increased interest in GAs where the number of researchers has risen dramatically. To infer that GAs
Management applications and other classical optimization problems

Figure F1.2.2. Practical applications ordered by earliest year of presentation as of July 1996.

are superior to other EA mainstream types can not be justified by these figures, though. It is rather the good 'infrastructure' of the GA community that fuels this trend: regular GA conferences since 1985, the availability of introductory textbooks, (semi-) professional GA tools, a well-organized and widely distributed newslsit (GA Digest), and cumulative effects following successful pilot applications.

All in all, it seems fair to say that we have not seen the big breakthrough of EAs in management practice, yet. Interest in these new techniques, however, has risen considerably since 1990 and will lead to a further increase in practical applications in the near future.

F1.2.2.3 Application-oriented research in management science

This evaluation (table F1.2.2) focuses on research in management science that is not linked to any practical project in business. There is a strong focus on GAs, even more than in practical applications. The overall picture with respect to major fields of interest and EA types used is similar to that of the previous section. However, the quantity and diversity of projects is larger than in practical applications. Research interest in production planning and financial services is particularly high.

Notable is the strong bias of research for jobshop and flowshop scheduling. Production planning is an important problem in practice, of course. However, the standard test problems used by many authors frequently lack many of the practical constraints faced in production (see also section F1.2.3). Research on standard operations research problems such as jobshop scheduling sometimes seems to be some sort of tournament where the practical relevance of the approach comes second to minimal improvements of some published benchmark results on simplifying test problems.

F1.2.2.4 Other classical optimization problems

Table F1.2.3 lists EA applications on classical optimization problems with relevance to not only management science but other domains as well. Many of them refer to randomly generated data or benchmark problems given in the literature. The interested reader will find some applications from evolutionary economics under the heading iterated games.

Besides GAs (most frequent) and ESs, some applications of EP, GP and learning classifier systems are found in the area of game theory, as well as in some combinatorial problems such as the TSP. The TSP is a particularly well-studied problem that has led to the creation of a number of specialized recombination operators for GAs. The potential of GAs for the field of combinatorial optimization is generally considered to be high, but there has been some scientific dispute on this theme (see GA Digest 7 (1993), issue 6 and subsequent issues).
F1.2.3 Some general observations on the competitiveness of evolutionary algorithms

F1.2.3.1 Mixed results

Given the limited space available, it is impossible to discuss here in detail the implementations, advantages and disadvantages of EAs in particular optimization problems. However, some rather general observations will be presented that follow from the published literature, personal experience, and discussions of the author with developers and users of EAs.

Only a few systematic and large-scale empirical comparisons between EAs and other solution techniques appear in the literature. The most recent and quite extensive investigation was carried out by Baluja (1995). He compares seven iterative and evolution-based optimization techniques on 27 static optimization problems. The problem set includes jobshop scheduling, TSP, knapsack, binpacking, neural network weight optimization, and standard numerical function optimization tasks. Such problems are frequently investigated in the EA literature. Two GAs, three variants of multiple-restart stochastic iterated hillclimbing, and two versions of population-based incremental learning are compared in terms of speed and the best solution found in a given number of trials. The experiments indicate that algorithms simpler than standard GAs can perform competitively on both small and large problem instances.

Other empirical studies support these results. For instance, the investigations by Park and Carter (1995), Park (1995), Goffe et al (1994), Ingber and Rosen (1992), and Nissen (Section G9.10 of this handbook) all show no advantage or even disfavor EAs over SA and the related threshold accepting heuristic on classical optimization problems such as the Max-Clique, Max-Sat, and quadratic assignment problems.

In contrast, many examples can be found in the literature where evolutionary approaches compete successfully with the best solution techniques available so far. We only mention the works of Falkenauer on binpacking and grouping problems (Falkenauer and Delchambre 1992, Falkenauer 1994, 1995), Khuri et al on vertex cover and multiple-knapsack problems (Khuri et al 1994, Khuri and Bäck 1994), Lienig and Thulasiraman on routing tasks (Lienig and Thulasiraman 1994), Fleurent and Ferland on the quadratic assignment problem (Fleurent and Ferland 1994), and Parada Daza et al on the two-dimensional guillotine cutting problem (Parada Daza et al 1995). Moreover, the author knows of further practical applications of EAs in business where excellent results were produced in highly constrained complex search spaces.

These rather mixed results pose a problem for practitioners in search of the most promising optimization technique for a given hard problem. On the one hand, the current situation reflects the enormous difficulties associated with empirical crossparadigm comparisons. These difficulties concern benchmark problems and benchmark results. On the other hand, theoretical evidence suggests that the quest for a universally superior optimization technique is ill directed. The following sections take up these issues in some more depth.

F1.2.3.2 Benchmark problems

The first requirement for a systematic empirical comparison of different optimization methods is a representative set of instances for the investigated problem class. This in turn demands the neat specification and description of the relevant characteristics of this class. As Berens (1991) correctly points out, the success of an optimization method may change drastically when parameters of the given problem class are varied. Examples of such parameters are the problem size as well as structural aspects (such as symmetry and variance of entries in data matrices).

Moreover, real-world applications often involve multiple goals, noisy or time-varying objective functions, ill-structured data, and complex constraints that are usually not covered by standard test problems available today. Thus, if one does not want to be restricted to trivial toy problems many details can be necessary to correctly specify a problem class, and a sizeable number of problem instances might be required to cover the class representatively. As an example, Brandeau and Chiu (1989) have identified 33 characteristics to specify location problems. The complexity of creating meaningful benchmark problems is further raised by including aspects such as deception, epistasis, and related characteristics commonly used to establish the EA hardness of a problem.

At present, we are far from having suitable problem class descriptions and publicly available representative benchmark problems on a broad scale. The necessity to collect or generate them is generally acknowledged, though. Beasley’s OR library of test problems (1990), available through the Internet from Imperial College in London, is a step in the right direction (http://mscmga.ms.ic.ac.uk/info.html). However,
it should be noted that it is extremely difficult to validate the suitability of any finite set of benchmark problems.

F1.2.3.3 Benchmark results

For a meaningful empirical comparison of competing optimization methods comparable statistical data are required. This is far from trivial. Several decisions must be taken in setting up the empirical test.

Choosing the right competitors. The comparison will have only limited significance unless we compare our approach with the strongest competitors available. It can require considerable effort to establish what paradigms should be compared. One reason is that certain very promising new heuristic techniques such as threshold accepting (Dueck and Scheuer 1990, Nissen and Paul 1995) are not widely known, yet. Others, such as tabu search and neural network approaches, have only been tested on a limited subset of classical optimization tasks, although they are potentially powerful in other problem classes as well.

Use results from the literature, or implement all compared paradigms? Implementing each optimization technique and performing experiments on the problem data is a very laborious task. Moreover, precise descriptions of every important detail of all compared paradigms are required. It is frequently difficult to obtain these precise descriptions from the literature. Even worse, as Koza points out in a recent posting to the *GP List*, one usually cannot avoid an unintentional bias in favor of the approach one is particularly familiar with.

However, suitable statistical data cannot in most cases be extracted from the literature. Authors use different measures to characterize algorithmic performance, such as the best solution found, mean performance, and variance of results. The number of runs to obtain statistical data for a given optimization method can vary between 1 and 100 in the literature. Moreover, differing hardware and software makes efficiency comparisons between own data and published results difficult.

Asking authors for the code that was used in generating published benchmark results can also lead to many difficulties related to program documentation, programming style, or hardware and software requirements.

Algorithmic design and parameter settings. There are numerous published variants of EAs, particularly concerning GAs. GAs were originally not developed for function optimization (De Jong 1993). However, much effort has been devoted to adapting them to optimization tasks, especially in terms of representation and search operators. Additional algorithmic parameters such as population size and population structure, crossover rate, and selection mechanism result in a considerable design flexibility for the developer. The same applies, albeit to a lesser extent, to other optimization methods one wishes to investigate.

This freedom in designing the optimization techniques and the difficulty of determining adequate strategy parameter settings adds further complexity to crossparadigm comparisons. It is impossible to test every design option. Additionally, there are different opinions as to whether a fair empirical comparison should focus on the generality of a method over many problem classes, or the power in one specific area of application. Generally, a tradeoff between the power and the generality of a solution technique will be observed (Newell 1969). Baluja (1995), for instance, who disfavors GAs, concentrates on generality. Successful evolutionary approaches, on the other hand, frequently apply a highly problem-dependent representation or decoding scheme and search operators, or they use hybrid approaches that combine EAs with other techniques (see, for example, the works of Davis (1991), Mühlenbein (1989), Liepins and Potter (1991), Falkenauer (1995), and Fleurent and Ferland (1994, 1995)). This leads to the next difficult decision.

Quality indicators for comparisons of optimization techniques. Besides the characteristics of power and generality there are many other aspects of an optimization technique that could be used to assess its quality. Examples include efficiency and ease of implementation. Matters are further complicated in that even the definition and measurement of these quality indicators is not universally agreed upon.

Conduct of the empirical comparison. The general setup of the experiments is crucial for the validity of results. Important decisions include the method of initialization, the termination criterion, and the number of runs on each problem instance.
Besides these difficulties in conducting meaningful empirical comparisons, theoretical results also suggest that it is hard to come to general conclusions about advantages and disadvantages of evolutionary optimization.

F1.2.3.4 Implications of the no-free-lunch theorem

Recently, Wolpert and Macready (1995) published a theorem that basically states the following (the no-free-lunch, NFL, theorem): all algorithms that search for an extremum of a cost function perform exactly the same, when averaged over all possible cost functions. This result is not specific to EAs but also concerns competing optimization methods.

Some very practical consequences follow from this theorem. They are not really new to optimization practitioners. However, the NFL theorem provides some useful theoretical background.

- The quest for an optimization technique that is generally superior is ill directed, as long as the area of application is not narrowly and precisely defined.
- Good performance of an optimization technique in one area of application will not guarantee equally good results in a different problem area.
- It is necessary to account for the particular biases and properties of the given cost function in the design of a successful algorithm for this application. In other words, one should start by analyzing the problem before thinking about the proper solution technique. Empirical comparisons, however, frequently proceed in the opposite direction, taking some broadly applicable optimization techniques and then looking for suitable test problems.

It is hard to come to general conclusions on advantages and disadvantages of EAs, given the NFL theorem and the difficult empirical situation. The statements in the following section should be taken as the author’s subjective view.

F1.2.3.5 Some advantages and disadvantages of evolutionary algorithms

To start with an advantage, it is not difficult to explain the basic idea of EAs to somebody completely new to the field. This is of great importance in terms of practical acceptance of the evolutionary approach.

An advantage and disadvantage at the same time is the design flexibility of EAs. It allows for adaptation to the problem under study, and the breadth of known EA applications gives testimony to this. EAs have in a relatively short time demonstrated their usefulness on an impressive variety of difficult optimization problems, including time-varying and stochastic environments. Algorithmic design of an EA can be achieved in a stepwise, prototyping-like manner. It is easy to produce a first working implementation that can then be improved upon, including domain-specific knowledge and using the ‘EA toolbox’ mentioned before. This adaptation of the method, however, requires empirical testing of design options and a sound methodical knowledge. In this sense, the many strategy parameters of today’s EAs are clearly a disadvantage, as compared to simpler competing optimization methods.

The basic EA types are broadly applicable and, in contrast to many of the more traditional optimization techniques, make only weak assumptions about the domain under study. They can be applied even when the insight into the problem domain is low. In fact, EAs can be positioned along a continuum from weak, broadly applicable methods to strong, highly specialized methods. (Compare also Michalewicz’s hierarchy of evolution programs (Michalewicz 1996).) Moreover, there are a variety of ways of integrating and hybridizing EAs with other existing methods, as evidenced by numerous publications. These advantages will, however, in general also hold for similar modern heuristics, such as SA or tabu search, even though they might currently lag behind in terms of total research effort spent.

With these competitors EAs also share some disadvantages. First, EAs can generally offer no guarantee of identifying a global optimum in limited time. They are of heuristic character. However, in practical applications it is often not necessary to find a global optimum, but a good solution will suffice. Unfortunately, it is difficult to predict the solution quality attainable with EAs on arbitrary real-world problems in a given amount of time. More generally, the empirical success of EAs is not easily explained in terms of the EA theory available today.

The population approach of EAs usually leads to high computational demands. Since EAs are easily parallelized, this is becoming less of a problem as available hardware power increases and parallel computers are more and more common. Furthermore, the optimization process can be rather inefficient in
the final search phase, particularly for GAs. Hybridizing with a quick local optimizer can cater for this problem, though.

With a few exceptions (such as grouping problems), it seems very difficult today to predict in advance whether for a particular real-world optimization problem EAs will produce results superior to those of similar modern heuristics such as threshold accepting or SA. The most important point is really to account for the properties of the problem in designing the algorithm, and here EAs offer a large toolbox to choose from.

F1.2.4 Conclusions

Over the last couple of years, interest in EAs has risen considerably amongst researchers and practitioners in the management domain, although we have not seen the major breakthrough of EAs in practical applications, yet. Most people have been attracted by GAs, while ESs, EP, and GP are not so widely known. GP is the newest technique and is just reaching the level of practical applicability, particularly in the financial sector. Even though GAs are most common, this should not be interpreted as superiority over other EA types. It rather seems to be a good ‘infrastructure’ that contributes to the trend for GAs.

The majority of applications analyzed here concern GAs in combinatorial optimization. Many researchers focus on standard problems to test the quality of their algorithms. The results are mixed. This is partly due to the enormous difficulties associated with conducting meaningful empirical comparisons between optimization techniques. Moreover, the NFL theorem tells us that one should not expect to find a universally superior optimization method. However, the current efforts to develop professional EA tools and parallelize EA applications, and the exponentially growing number of EA researchers, will lead to more practical applications in the future and a better understanding of the relative advantages and weaknesses of the evolutionary approach. Figure F1.2.3 is an attempt to assess the current position of EAs as an optimization method with respect to the technological life cycle.

![Figure F1.2.3. An estimation of the current state of EAs as an optimization method in a life cycle model as of July 1996.](image)

There is evidence for the robustness of EAs in stochastic optimization where the evaluation involves noise or requires an approximation of the true objective function value (Grefenstette and Fitzpatrick 1985, Hammel and Bäck 1994, Nissen and Biethahn 1995). Encouraging first results have also been achieved in time-varying environments employing nonstandard concepts such as diploidy (Smith 1987, Smith and Goldberg 1992, Dasgupta and McGregor 1992, Ng and Wong 1995). EAs also have been shown to work well on integer programming problems which are presently difficult to solve with conventional techniques such as linear programming for large or nonlinear instances (Bean and Hadj-Alouane 1992, Hadj-Alouane and Bean 1992, Khuri et al 1994, Khuri and Bäck 1994, Rudolph 1994).

Currently, EAs are becoming more and more integrated as an optimization module in large software products (e.g. for production planning). Thereby, the end user is often unaware that an evolutionary approach to problem solving is employed. Integrating and hybridizing EAs with other techniques is a most promising research direction. It aims at combining the relative advantages of different problem solving methods and leads to powerful tools for practical applications.
References cited in the text

—1996b An Indexed Bibliography of Genetic Algorithms in Manufacturing University of Vaasa Department of Information Technology and Production Economics Report Series 94-1-MANU
—1996c An Indexed Bibliography of Genetic Algorithms in Logistics University of Vaasa Department of Information Technology and Production Economics Report Series 94-1-LOGISTICS

Beasley J E 1990 OR-library: distributing test problems by electronic mail J. Operational Res. Soc. 41 1069–72

Belew R K and Booker L B (eds) 1991 Proc. 4th Int. Conf. on Genetic Algorithms (San Diego, CA, July 1991) (San Mateo, CA: Morgan Kaufmann)

Berens W 1991 Beurteilung von Heuristiken (Wiesbaden: Gabler)

Brandeau M L and Chiu S S 1989 An overview of representative problems in location research Management Sci. 35 645–74

De Jong K A 1993 Genetic algorithms are NOT function optimizers Foundations of Genetic Algorithms vol 2, ed D Whitley (San Francisco, CA: Morgan Kaufmann) pp 5–17

Falkenauer E 1994 A new representation and operators for genetic algorithms applied to grouping problems Evolutionary Comput. 2 123–44

Michalewicz Z 1996 Genetic Algorithms + Data Structures = Evolution Programs 3rd edn (Berlin: Springer)

Mühlenbein H 1989 Parallel genetic algorithms, population genetics and combinatorial optimization Proc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, 1989) ed J D Schaffer (San Mateo, CA: Morgan Kaufmann) pp 416–21

Nissen V and Paul H 1995 A modification of threshold accepting and its application to the quadratic assignment problem OR Spektrum 17 205–10

Schaffer J D (ed) 1989 Proc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, June 1989) (San Mateo, CA: Morgan Kaufmann)

Smith R E and Goldberg D E 1992 Diploidy and dominance in artificial genetic search Complex Syst. 6 251–85

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation release 97/1 F1.2:10
Appendix A. Tables

Tables F1.2.1, F1.2.2, and F1.2.3 list, respectively, the use of EAs in practical management applications, in application-oriented research in management science, and in other classical optimization problems. The references cited in these tables are listed in Appendix B. In tables F1.2.1 and F1.2.2, the ‘Earliest known’ column indicates the year of the earliest known presentation.

<table>
<thead>
<tr>
<th>Economic sector</th>
<th>Practical application in business</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Industry</td>
<td>Line balancing in the metal industry</td>
<td>[FALK92]</td>
<td>1992</td>
</tr>
<tr>
<td>1.1 Production</td>
<td></td>
<td>[FULK93b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Simultaneous planning of production program, lotsizes, and production sequence in the wallpaper industry</td>
<td>[ZIMM85]</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td>Load balancing for sugar beet presses</td>
<td>[FOGA95d], [VAVA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Balancing combustion between multiple burners in furnaces and boiler plants</td>
<td>[FOGA88, 89]</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Grouping orders into lots in a foundry</td>
<td>[FALK91b]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Multiobjective production planning</td>
<td>[BUSC91]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[NOCH90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Deciding on buffer capacity and number of system pallets in chained production</td>
<td>[NOCH90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Production planning in the chemical industry</td>
<td>[BRUN93a]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Lotsizing and sequencing in the car industry</td>
<td>[ABLA91, 95a]</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Flowshop scheduling for the production of integrated circuits</td>
<td>[WHIT91], [STAR92]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Sector release scheduling at a computer board assembly and test facility</td>
<td>[CLEV89]</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Sequencing orders in the electrical industry</td>
<td>[ABLA90]</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Sequencing orders in the paper industry</td>
<td>[ABLA90]</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Scheduling foundry core–pour–mold operations</td>
<td>[FULK93a]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Sequencing in a hot-rolling process</td>
<td>[SCHU93b, c]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Sequencing orders for the production of engines</td>
<td>[SCHO91, 92, 94]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Scheduler for a finishing plant in clothing</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Process planning for part of a multip spindle machine</td>
<td>[VANC91]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Stacking of aluminium plates onto pallets</td>
<td>[PROS88]</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Production planning with dominant setup costs</td>
<td>[SCHÜ94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Scheduling in car production of Daimler–Benz</td>
<td>[FOGA95a, b], [KRES96]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling (assumed: production scheduling) at Rolls Royce (application not confirmed by Rolls Royce)</td>
<td>[FOGA95a, b]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Sequencing and lotsizing in the pharmaceutical industry</td>
<td>[SCHU94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Forge scheduling</td>
<td>[SIRA95]</td>
<td>1995</td>
</tr>
<tr>
<td>Economic sector</td>
<td>Practical application in business</td>
<td>References</td>
<td>Earliest known</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1.1 Production (continued)</td>
<td>Production scheduling in a steel mill</td>
<td>[YONG95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Slab design (kind of bin packing)</td>
<td>[HIRA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling and resource management in ship repair</td>
<td>[FILI94, 95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Just-in-time scheduling of a collator machine</td>
<td>[RIXE95], [KOPF95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Optimizing the cutting of fabric</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td>1.2 Inventory</td>
<td>Inventory control in engine manufacturing</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td>1.3 Personnel</td>
<td>Crew/staff scheduling</td>
<td>[WILL96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Crew scheduling in an industrial plant</td>
<td>[MOCC95]</td>
<td>1995</td>
</tr>
<tr>
<td>1.4 Distribution</td>
<td>Siting of retail outlets</td>
<td>[HUGH90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Allocation of orders to loading docks in a brewery</td>
<td>[STAR91b, 92, 93a, b]</td>
<td>1991</td>
</tr>
<tr>
<td>2. Financial services</td>
<td>Assessing insurance risks</td>
<td>[HUGH90]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developing rules for dealing in currency markets</td>
<td>[HUGH90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Modeling trading behavior in financial markets</td>
<td>[SCHU93a]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Trading strategy search</td>
<td>[NOBL90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Security selection and portfolio optimization</td>
<td>[NOBL90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Risk management</td>
<td>[NOBL90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Evolved neural network predictor to handle pension money</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Credit scoring</td>
<td>[NOBL90], [WALK94, 95]</td>
<td>1990, 1994</td>
</tr>
<tr>
<td></td>
<td>Time series analysis</td>
<td>[NOBL90]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Credit card application scoring</td>
<td>[FOGA91, 92]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Credit card account performance scoring</td>
<td>[FOGA91, 92]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Credit card transaction fraud detection</td>
<td>[FOGA91, 92]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Credit evaluation at the Co-Operative Bank</td>
<td>[KING95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Fraud detection at Travelers Insurance Company</td>
<td>[KING95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Fraud detection at the Bank of America</td>
<td>[VERE95b]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Financial trading rule generation</td>
<td>[KERS94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Detecting insider dealing at London Stock Exchange</td>
<td>[KING95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Building financial trading models</td>
<td>[ROGN94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Improving trading strategies in stock market simulation</td>
<td>[MAZA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Prediction of prepayment rates for adjustable-rate home mortgage loans</td>
<td>[VERE95a]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Optimal allocation of personnel in a large bank</td>
<td>[EIBE94b]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Constructing scorecards for credit control</td>
<td>[FOGA94b], [IRES94, 95]</td>
<td>1994</td>
</tr>
</tbody>
</table>
Table F1.2.1. Practical applications of EAs in management (continued).

<table>
<thead>
<tr>
<th>Economic sector</th>
<th>Practical application in business</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Energy</td>
<td>Optimal load management in a power plant network</td>
<td>[ADER85], [WAGN85] [HOEH96]</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td>Optimized power flow in energy supply networks</td>
<td>[MÜLL83a, b, 86] [FUCH83]</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td>Cost-efficient core design of fast breeder reactors</td>
<td>[HEUS70]</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>Optimizing a chain of hydroelectric power plants</td>
<td>[HÜLS94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Scheduling planned maintenance of the UK electricity transmission network</td>
<td>[LANG95, 96]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Network pipe sizing for British Gas</td>
<td>[SURR94, 95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Refueling of pressurized water reactors</td>
<td>[AXMA94a, b], [BÄCK95, 96a]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Scheduling in a liquid-petroleum pipeline</td>
<td>[SCHA94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Hot parts operating scheduling of gas turbines</td>
<td>[SAKA93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Maximizing efficiency in power station cycles</td>
<td>[SONN82]</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>Scheduling delivery trucks for an oil company</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Scheduling trains on single-track lines</td>
<td>[MILL93], [ABRA93b, 94]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Vehicle routing (United Parcel Service)</td>
<td>[KADA90a, b, 91]</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Finding a just-in-time delivery schedule</td>
<td>[KEME95b]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Multicommodity transshipment problem</td>
<td>[THAN92b]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>School bus routing</td>
<td>[THAN92a]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Determining railtrack reconstruction sites to minimize traffic disturbance</td>
<td>[ABL A92, 95a]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Scheduling cleaning personnel for trains</td>
<td>[ABL A92, 95a]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Scheduling aircraft landing times to minimize cost</td>
<td>[ABRA93a]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Predicting the bids of pilots for promotion to larger than their current aircraft</td>
<td>[SYLO93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Elevator dispatching</td>
<td>[SIRA93]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Vehicle scheduling problem of the mass transportation company of Mestre, Italy</td>
<td>[BAIT95]</td>
<td>1995</td>
</tr>
<tr>
<td>5. Telecommunication</td>
<td>Designing low-cost sets of packet switching communication network links</td>
<td>[DAVI87, 89], [COOM87]</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td>Anticipatory routing and scheduling of call requests</td>
<td>[COX91]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Designing a cost-efficient telecommunication network with a guaranteed level of survivability</td>
<td>[DAVI93b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Local and wide-area network design</td>
<td>[KEAR95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>TSP for several system installers</td>
<td>[KEAR95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Optimizing telecommunication network layout</td>
<td>[KEIJ95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>On-line reassignment of computer tasks across a suite of heterogeneous computers</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
</tbody>
</table>
Table F1.2.1. Practical applications of EAs in management (continued).

<table>
<thead>
<tr>
<th>Economic sector</th>
<th>Practical application in business</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Education</td>
<td>School timetable problem</td>
<td>[COLO91a, b, 92a][LING92b]</td>
<td>1990 1992</td>
</tr>
<tr>
<td></td>
<td>Scheduling student presentations</td>
<td>[PAEC94b]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Hybrid solution for a polytechnic timetable problem</td>
<td>[LING92a]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Timetabling of exams and classes</td>
<td>[ERGU95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Exam scheduling problem</td>
<td>[CORN93, 94], [ROSS94a, b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Automatically screening tax claims</td>
<td>[KING95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling the Hubble Space Telescope</td>
<td>[SPON89]</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Mission planning (two cases)</td>
<td>[FOGE96]</td>
<td>1996</td>
</tr>
<tr>
<td>8. Trade</td>
<td>Determining cluster storage properties for product clusters in a distribution center for vegetables/ fruits</td>
<td>[BROE95a, b]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Data mining—analyzing supermarket customer data</td>
<td>[KOK96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Optimal selection for direct mailing in marketing</td>
<td>[EIBE96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Determining the right quantity of books’ first editions</td>
<td>[ABLA95a]</td>
<td>1995</td>
</tr>
<tr>
<td>9. Health care</td>
<td>Scheduling patients in a hospital</td>
<td>[ABLA92, 95a]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Allocating investments to health service programs</td>
<td>[SCHW72]</td>
<td>1972</td>
</tr>
<tr>
<td>10. Disposal systems</td>
<td>Optimal siting of local waste disposal systems</td>
<td>[FALK80]</td>
<td>1980</td>
</tr>
<tr>
<td></td>
<td>Vehicle routing and location planning for waste disposal systems</td>
<td>[DEPP92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Scheduling an F-14 flight simulator to pilots</td>
<td>[SYSW91a, b]</td>
<td>1991</td>
</tr>
</tbody>
</table>

Table F1.2.2. EAs in application-oriented research in management science. The third column, headed ‘No’, indicates the number of projects.

<table>
<thead>
<tr>
<th>General topic</th>
<th>Research application</th>
<th>No</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location problems</td>
<td>Facility layout/location planning</td>
<td>10</td>
<td>[KHUR90], [TAM92], [SMIT93], [YIP93], [CHAN94a], [CONW94], [NISS94a, b], [YERA94], [KADO95], [KRAU95], [GARC96]</td>
<td>1990–1996</td>
</tr>
<tr>
<td></td>
<td>Layout design</td>
<td>1</td>
<td>[STAW95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Locational and sectoral modeling</td>
<td>1</td>
<td>[STEN93, 94a, b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Location planning in distribution</td>
<td>1</td>
<td>[DEMM92]</td>
<td>1992</td>
</tr>
<tr>
<td>R & D</td>
<td>Learning models of consumer choice</td>
<td>2</td>
<td>[GREE87], [OLIV93]</td>
<td>1987 1993</td>
</tr>
<tr>
<td>General topic</td>
<td>Research application</td>
<td>No</td>
<td>References</td>
<td>Earliest known</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>----</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Inventory</td>
<td>Optimizing a Wagner–Whitin model</td>
<td>1</td>
<td>[SCHO76]</td>
<td>1976</td>
</tr>
<tr>
<td></td>
<td>Optimizing decision variables of a stochastic inventory simulation</td>
<td>1</td>
<td>[BIET94], [NISS94a,95a,b,c]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Identifying economic order quantities</td>
<td>1</td>
<td>[STOC93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Multicriterion inventory classification</td>
<td>1</td>
<td>[GÜVE95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling transportation vehicles in large warehouses</td>
<td>1</td>
<td>[SCHÖ94]</td>
<td>1994</td>
</tr>
<tr>
<td>Production</td>
<td>Dynamic multiproduct, multistage lotsizing problem</td>
<td>1</td>
<td>[HELB93]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>GA-based process planning model</td>
<td>1</td>
<td>[AWAD95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Minimizing total intercell and intracell moves in cellular manufacturing</td>
<td>1</td>
<td>[GUPT92]</td>
<td>1992</td>
</tr>
<tr>
<td>Line balancing</td>
<td></td>
<td>5</td>
<td>[ANDE90], [SCHÜ92], [BRĂH92], [WEBE93], [ANDE94a,b], [GEHR94], [LEU94], [TSUJ95a,b], [WATA95]</td>
<td>1990–1995</td>
</tr>
<tr>
<td></td>
<td>Knowledge base refinement and rule-based simulation for an automated transportation system</td>
<td>1</td>
<td>[TERA94]</td>
<td>1994</td>
</tr>
<tr>
<td>Short-term production scheduling</td>
<td>2</td>
<td>[MICH95], [KURB95a,b]</td>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>Lotsizing and scheduling</td>
<td>1</td>
<td>[GRUN95]</td>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>Batch sequencing problem</td>
<td>1</td>
<td>[JORD94]</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>Parameter optimization of a simulation model for production planning</td>
<td>2</td>
<td>[AYTU94], [CLAU95,96]</td>
<td>1994–1995</td>
<td></td>
</tr>
<tr>
<td>Optimization tools for intelligent manufacturing systems</td>
<td>1</td>
<td>[WELL94]</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>Flowshop scheduling</td>
<td>17</td>
<td>[ARLA79,87], [WERN84,88], [BADA91], [CART91,93b,94], [REEV91,92a,b,95], [RUBI92], [STÖP92], [BIER92a,94,95], [BAC93], [MULK93], [CAI94], [ISHI94], [MURA94], [CHEN95a], [FICH95], [HAD95a,b], [SANG95], [STAW95]</td>
<td>1979–1995</td>
<td></td>
</tr>
<tr>
<td>Job shop scheduling</td>
<td>53</td>
<td>[DAVI85], [HILL87,88,89a,b,90], [LIEP87], [BIEG90], [HÖNE90], [KHUR90], [BAGC91], [FALK91a], [HUSB91a,b,92,93,94], [KANE91], [NAKA91,94], [NISH91], [BEAN92a], [BRUN92,93b,94a,b], [DORN92,93,95], [MORI92], [PARE92a,b,93], [PESC92,93], [STOR92,93], [TAMA92], [YAMA92a], [BIER93], [CLAU93], [DAGL93,95], [DAVI93a], [FANG93], [GEUR93], [GUPT93a,b], [JONE93], [KOPF93a], [UCKU93], [VOLT93], [APPE94], [ATLA94], [DAVE94], [GEN94a,b], [KIM94a], [LEE94], [MATT94], [PALM94b], [SHEN94], [SOAR94], [TUS094a,b], [CHAN95], [CHEN95b], [CHOI95], [CROC95], [JÖZE95], [KIM95], [KOBA95], [LEE95b,c], [LIM95], [MCMA95], [MESM95], [NORM95], [PARK95c,d,e], [ROGN95], [RUBI95], [SZAK95], [MATT96], [OMAN96]</td>
<td>1985–1996</td>
<td></td>
</tr>
</tbody>
</table>
Table F1.2.2. EAs in application-oriented research in management science. The third column, headed ‘No’, indicates the number of projects (continued).

<table>
<thead>
<tr>
<th>General topic</th>
<th>Research application</th>
<th>No</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Job shop group scheduling</td>
<td>1</td>
<td>[MAO95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Discovering manufacturing control strategies</td>
<td>1</td>
<td>[BOWD92, 95]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Two-stage production scheduling problem</td>
<td>1</td>
<td>[QUIN95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling in flexible manufacturing</td>
<td>3</td>
<td>[HOLS93], [FUJI95], [LIAN95]</td>
<td>1993–1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling in a flowline-based cell</td>
<td>1</td>
<td>[JAGA94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Optimizing a material flow system</td>
<td>1</td>
<td>[NOCH86, 90]</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>Buffer optimization in assembly system</td>
<td>1</td>
<td>[BULG95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Evolutionary parameterization of a lotsizing heuristic</td>
<td>1</td>
<td>[SCHW94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Optimal network partition and Kanban allocation in just-in-time production</td>
<td>1</td>
<td>[ETTL95], [SCHW95, 96]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Job scheduling in electrical assembly</td>
<td>1</td>
<td>[DEO95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Routing in manufacturing</td>
<td>1</td>
<td>[STAW95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling and resource management in a textile factory</td>
<td>1</td>
<td>[FILI92, 93, 95]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Scheduling in steel flamecutting</td>
<td>1</td>
<td>[MURR96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Scheduling the production of chilled ready meals</td>
<td>1</td>
<td>[SHAW96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Sequencing jobs in car industry</td>
<td>2</td>
<td>[DEGE95], [WARW95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling maintenance tasks</td>
<td>1</td>
<td>[GREE94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Scheduling problem in a plastics forming plant</td>
<td>1</td>
<td>[TAMA93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Parallel machine tool scheduling</td>
<td>1</td>
<td>[NORM95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Open shop scheduling</td>
<td>1</td>
<td>[FANG93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Lotsizing and sequencing in printed circuit board manufacturing</td>
<td>1</td>
<td>[LEE93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Decentral production scheduling</td>
<td>1</td>
<td>[WIEN94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>General production scheduling</td>
<td>5</td>
<td>[FUKU93], [WEIN93], [BLUM94], [PESC94], [STAC94]</td>
<td>1993–1994</td>
</tr>
<tr>
<td></td>
<td>Open-pit design and scheduling</td>
<td>1</td>
<td>[DENB94a, b]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Underground mine scheduling</td>
<td>1</td>
<td>[DENB95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Scheduling solvent production</td>
<td>1</td>
<td>[IGNI91, 93]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Maintenance scheduling</td>
<td>1</td>
<td>[KIM94b]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Machine component grouping</td>
<td>1</td>
<td>[VENU92]</td>
<td>1992</td>
</tr>
<tr>
<td>General topic</td>
<td>Research application</td>
<td>No</td>
<td>References</td>
<td>Earliest known</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>----</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Production (continued)</td>
<td>Design of cost-minimal cable networks for production appliances</td>
<td>1</td>
<td>[SCHI81]</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>Grouping parts</td>
<td>1</td>
<td>[STAW95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Ordering problem in an assembly process with constant use of parts</td>
<td>1</td>
<td>[AKAT94], [SANN94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Information resource matrix for intelligent manufacturing</td>
<td>1</td>
<td>[KULK92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Classification of engineering design for later reuse</td>
<td>1</td>
<td>[CAUD92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Industrial bin packing problems</td>
<td>1</td>
<td>[FALK92, 94a, b, 95]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Two-dimensional guillotine cutting problem</td>
<td>1</td>
<td>[PARA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Best-cut bar problem</td>
<td>1</td>
<td>[ORDI95]</td>
<td>1995</td>
</tr>
<tr>
<td>Distribution</td>
<td>Vehicle routing</td>
<td>6</td>
<td>[THAN91a, b, 93a, b, c, 95], [LONT92], [MAZI92, 93], [BLAN93], [HIRZ92], [PANK93], [KOPF93b, 94], [UCHI94], [SCHL96]</td>
<td>1991–1996</td>
</tr>
<tr>
<td></td>
<td>Vehicle fleet scheduling</td>
<td>1</td>
<td>[STEF95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Transportation problems</td>
<td>4</td>
<td>[CADE94], [YANG94], [GEN94c, 95], [IDA95], [MICH96]</td>
<td>1989–1994</td>
</tr>
<tr>
<td></td>
<td>Minimization of freight rate in commercial road transportation</td>
<td>1</td>
<td>[KOPF92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Pallet packing/stacking in trucks</td>
<td>1</td>
<td>[JULI92, 93]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Assigning customer tours to trucks</td>
<td>1</td>
<td>[SCHR91], [BORK92, 93]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Optimizing distribution networks</td>
<td>1</td>
<td>[CAST95a, b]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Two-stage distribution problem</td>
<td>1</td>
<td>[BRAU93]</td>
<td>1993</td>
</tr>
<tr>
<td>Strategic management</td>
<td>Forecasting of company profit</td>
<td>1</td>
<td>[THOM86]</td>
<td>1986</td>
</tr>
<tr>
<td>and control</td>
<td>Project planning</td>
<td>2</td>
<td>[CHEN94b], [HART96]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Calculation of budget models</td>
<td>1</td>
<td>[SPUT84]</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td>Resource-constrained scheduling in project management</td>
<td>1</td>
<td>[LEON95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Business system planning</td>
<td>1</td>
<td>[KNOL93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Dynamic solutions to a strategic market game</td>
<td>1</td>
<td>[BOND94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Portfolio optimization</td>
<td>1</td>
<td>[ABLA95b]</td>
<td>1995</td>
</tr>
<tr>
<td>Organization</td>
<td>Evolution of organizational forms under environmental selection</td>
<td>1</td>
<td>[BRUD92a, 93]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>The relationship between organizational structure and ability to adapt</td>
<td>1</td>
<td>[MARE92a, b]</td>
<td>1992</td>
</tr>
</tbody>
</table>
Table F1.2.2.

EAs in application-oriented research in management science. The third column, headed ‘No’, indicates the number of projects (continued).

<table>
<thead>
<tr>
<th>General topic</th>
<th>Research application</th>
<th>No</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timetabling</td>
<td>Timetable problems</td>
<td>15</td>
<td>[HENS86], [ABRA91], [FANG92], [PAEC93, 94a, 95], [BURK94, 95a, b], [KINN94], [ROSS94c, 95], [FUKU95], [JACK95], [JUNG95], [MACD95], [AVIL95], [ERBE95], [FOR595], [QUEI95], [CIL96]</td>
<td>1986–1996</td>
</tr>
<tr>
<td>Trade</td>
<td>Sales forecasting for a newspaper</td>
<td>1</td>
<td>[SCHÖ93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Selecting competitive products as part of product market analysis</td>
<td>1</td>
<td>[BALA92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Market segmentation (deriving product market structures)</td>
<td>1</td>
<td>[HURL94, 95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Feature selection for analyzing the characteristics of consumer goods</td>
<td>1</td>
<td>[TERA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Price and quantity decisions in oligopolistic markets</td>
<td>1</td>
<td>[DOS93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Site location of retail stores</td>
<td>1</td>
<td>[HURL94, 95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Solving multistage location problems</td>
<td>1</td>
<td>[SCHÜ95a, b, c]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Evolution of trade strategies</td>
<td>1</td>
<td>[LENT94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Bargaining by artificial agents</td>
<td>1</td>
<td>[DWO96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Analyzing efficient market hypothesis</td>
<td>1</td>
<td>[CHEN96]</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>Determining good pricing strategies in an oligopolistic market</td>
<td>1</td>
<td>[MARK89, 92a, b, 95]</td>
<td>1989</td>
</tr>
<tr>
<td>Financial services</td>
<td>Bankruptcy prediction</td>
<td>1</td>
<td>[SIKO92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Loan default prediction</td>
<td>1</td>
<td>[SIKO92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Time-series prediction</td>
<td>4</td>
<td>[GERR93], [EGLI94], [BORA95], [ROBI95]</td>
<td>1993–1995</td>
</tr>
<tr>
<td></td>
<td>Commercial loan risk classification</td>
<td>1</td>
<td>[SIKO92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Building classification rules for credit scoring</td>
<td>1</td>
<td>[MACK94, 95a]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Credit card attrition problem</td>
<td>1</td>
<td>[TUFT93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Predicting horse races</td>
<td>1</td>
<td>[PERR94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Financial analysis</td>
<td>1</td>
<td>[SING94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Stock market forecaster</td>
<td>2</td>
<td>[MOOR94], [WARR94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Filtering insurance applications</td>
<td>1</td>
<td>[GAMM91]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Investment portfolio selection</td>
<td>1</td>
<td>[ARNO93], [LORA95]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Stock market simulation</td>
<td>2</td>
<td>[ARTH91b], [TAYL95]</td>
<td>1991–1995</td>
</tr>
<tr>
<td></td>
<td>Trading models evolution</td>
<td>1</td>
<td>[OUSS96]</td>
<td>1996</td>
</tr>
</tbody>
</table>
Management applications and other classical optimization problems

Table F1.2.2. EAs in application-oriented research in management science. The third column, headed ‘No’, indicates the number of projects (continued).

<table>
<thead>
<tr>
<th>General topic</th>
<th>Research application</th>
<th>No</th>
<th>References</th>
<th>Earliest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial services (continued)</td>
<td>Economic modeling</td>
<td>1</td>
<td>[KOZA95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Modeling of money markets by adaptive agents</td>
<td>1</td>
<td>[BOEH94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Learning strategies in a multiagent stock market simulation</td>
<td>1</td>
<td>[LEBA94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Trading automata in a computerized double auction market</td>
<td>5</td>
<td>[ANDR91, 95], [ARTH91a, 92], [MARG91, 92], [HOLL92b], [NOTT92], [ANDR94]</td>
<td>1990–1993</td>
</tr>
<tr>
<td></td>
<td>Optimized stock investment</td>
<td>1</td>
<td>[EDDE95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Evolutionary simulation of asset trading strategies</td>
<td>1</td>
<td>[RIEC94]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Genetic rule induction for financial decision making</td>
<td>2</td>
<td>[ALLE93], [GOON94, 95b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Neurogenetic approach to trading strategies</td>
<td>1</td>
<td>[KLIM92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Determining parameters of business timescale (analyzing price history)</td>
<td>1</td>
<td>[DACO93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Discovering currency investment strategies</td>
<td>2</td>
<td>[BAUE92, 94a, b, 95], [CHOP95], [PICT95]</td>
<td>1992–1995</td>
</tr>
<tr>
<td></td>
<td>Analyzing the currency market</td>
<td>1</td>
<td>[BELT93a, b]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Negotiation support tool</td>
<td>1</td>
<td>[MATW91]</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Clustering of power networks</td>
<td>1</td>
<td>[DING92]</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>Forecasting natural gas demand for an energy supplier</td>
<td>1</td>
<td>[SCHO93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Unit commitment problem, generator scheduling</td>
<td>5</td>
<td>[DASG93a, b], [SHEB94], [KAZA95], [WONG95a, b, c, 96], [ORER96]</td>
<td>1993–1996</td>
</tr>
<tr>
<td></td>
<td>Optimal arrangement of fresh and burnt nuclear fuel</td>
<td>1</td>
<td>[HEIS94a, 94b]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Fuel cycle optimization</td>
<td>1</td>
<td>[POON90, 92]</td>
<td>1990</td>
</tr>
<tr>
<td>Water supply systems</td>
<td>Designing water distribution networks</td>
<td>5</td>
<td>[CEMB79, 92], [MURP92, 93], [LOHB93], [WALT93a, b, c, 94, 95, 96], [SIMP94a, b], [DAVI95], [SAVI94a, b, 95a, c]</td>
<td>1992–1994</td>
</tr>
<tr>
<td></td>
<td>Pressure regulation in water distribution networks to control leakage losses</td>
<td>1</td>
<td>[SAVI95e, 96]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Cost optimization of opportunity-based maintenance policies</td>
<td>1</td>
<td>[SAVI95c, d]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Pump scheduling for water supply, minimizing overall costs</td>
<td>1</td>
<td>[MACK95b]</td>
<td>1995</td>
</tr>
<tr>
<td>Traffic management</td>
<td>Optimizing train schedules to minimize passenger change times</td>
<td>2</td>
<td>[NACH93, 95a, b, c, 96], [WEZE94], [VOGE95a, b, c, d]</td>
<td>1993, 1994</td>
</tr>
<tr>
<td></td>
<td>Scheduling underground trains</td>
<td>1</td>
<td>[HAMP81]</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>Scheduling urban transit systems</td>
<td>1</td>
<td>[CHAK95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Elevator group control</td>
<td>1</td>
<td>[ALAN95]</td>
<td>1995</td>
</tr>
</tbody>
</table>
Table F1.2.2. EAs in application-oriented research in management science. The third column, headed ‘No’, indicates the number of projects (continued).

<table>
<thead>
<tr>
<th>General topic</th>
<th>Research application</th>
<th>No</th>
<th>References</th>
<th>Earliest known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic management (continued)</td>
<td>Controlling free flying for aircraft</td>
<td>1</td>
<td>[GERD94a,b,c,95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Air traffic free routing</td>
<td>1</td>
<td>[KEME95a,c], [KOK96]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Solving air traffic control conflicts</td>
<td>1</td>
<td>[ALLI93]</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Partitioning air space</td>
<td>1</td>
<td>[DELA94,95]</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>Airline crew scheduling</td>
<td>1</td>
<td>[CHU95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Public transport drive scheduling</td>
<td>1</td>
<td>[WREN95]</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Control of metering rates on freeway ramps</td>
<td>1</td>
<td>[MCD095b]</td>
<td>1995</td>
</tr>
</tbody>
</table>

Personnel management	Employee staffing and scheduling	3	[EAST93], [LEVI93a,b,95,96], [TANO95]	1993–1995
	Talent scheduling	1	[NORD94]	1994
	Audit staff scheduling	1	[SALE94]	1994

Telecommunication	Terminal assignment in a telecommunications network	1	[ABUA94a,b]	1994
	Minimum-broadcast-time problem	1	[HOEL96a]	1996
	Finding investigator tours in telecommunication networks	1	[HOEL96b]	1996
	Analysis of call and service processing in telecommunications	1	[SINK95]	1995
	Routing in communication networks	1	[CARS95]	1995
	Design of communication networks	1	[CLIT89]	1989

Miscellaneous	General resource allocation problems	2	[SCHO76], [BEAN92a]	1976
	Forecasting time series data in economic systems	1	[LEE95a]	1995
	Investigation of taxation-induced interactions in capital budgeting	1	[BERR93]	1993

Table F1.2.3. EAs in other classical optimization problems.

<table>
<thead>
<tr>
<th>Standard problem</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveling salesman problem</td>
<td>[ABL79,87], [BRAD85], [GOLD85], [GRE85b,87b], [HENS86], [JO87,91], [LIE87,90], [MÜHL87,88,91b,92], [OLIV87], [SIRA87], [SUH87a,b], [WHIT87,91], [FOGE88,90,93,c,d], [HERD88,91], [GOR89,91a,b,c], [NAPI89], [BRA90,91], [JOHN90], [NYGA90,92], [PET90], [AMBA91,92], [BIER91,92b], [ESHE91], [FOX91], [GROO91], [HOFF91b], [MAND91], [RUD91], [SEN91], [STAR91a,b,92], [ULDE91], [BEYE92], [DAV92], [MATH92], [MOS92], [YAMA92b], [BAC93], [FOGA93], [HOMA93], [KID93], [NET93], [PRIN93], [STAN93], [SY93], [TSUT93], [YANG93a], [BU94a], [AP94a], [DAR94], [DZUB94], [EIBE94a], [TAMA94b], [TANG94], [TATE94], [VAK94], [YOSH94], [ABBA95], [BIAN95], [COTT95], [CRA95], [JUL95], [ROBB95], [KURE96], [POTV96]</td>
</tr>
</tbody>
</table>
Table F1.2.3. EAs in other classical optimization problems (continued).

<table>
<thead>
<tr>
<th>Standard problem</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterated games (mostly prisoner’s dilemma)</td>
<td>[ADAC87, 91], [AXEL87, 88], [FUJI87], [MARK89], [MILL89], [MATS90],</td>
</tr>
<tr>
<td></td>
<td>[POGE91, 92a, 93a, 94, 95a, b], [LIND91], [MUHL91c], [BRUD92b], [CHAT92],</td>
</tr>
<tr>
<td></td>
<td>[KOZA92a, b], [STAN93], [SERE94], [DAWI95], [SIEG95], [BURN95], [DARW95],</td>
</tr>
<tr>
<td></td>
<td>[HART95], [HAO95], [YAO95b], [HO96], [JULS96], [MICH96]</td>
</tr>
<tr>
<td>Bin packing</td>
<td>[FOUR85], [SMIT85, 92b], [DAVI90, 92], [KRÖG91, 92], [FALK92, 94a, b, 95],</td>
</tr>
<tr>
<td></td>
<td>[CORC93], [REEV93], [HINT94], [JAKO94a, b], [KHUR95]</td>
</tr>
<tr>
<td>Steiner problem</td>
<td>[HESS89], [GER91], [HES91], [OSTE92, 94], [JULS93], [KAPS93], [KAPS94],</td>
</tr>
<tr>
<td></td>
<td>[ESBE95], [VAS95]</td>
</tr>
<tr>
<td>Set covering</td>
<td>[REPP85], [LIEP87, 90, 91], [SEN93], [SEKH93], [BEAS94], [CORN95],</td>
</tr>
<tr>
<td></td>
<td>[BÄCK96c]</td>
</tr>
<tr>
<td>Quadratic assignment problem</td>
<td>[COHO86], [BROW89], [MUHL89, 90, 91a], [LI90], [HUNT91], [MAN91, 95],</td>
</tr>
<tr>
<td></td>
<td>[BEAN92a], [COLO92b], [LI92], [NISS92, 93a, 94a, c, d, e], [POON92],</td>
</tr>
<tr>
<td></td>
<td>[FALC93], [TATE95], [YIP93, 94], [BU94b], [FLEU94], [KELL94], [MARE94a, b, 95]</td>
</tr>
<tr>
<td>Assignment problems</td>
<td>[CART93a], [LEVI93c]</td>
</tr>
<tr>
<td>Knapsack problems</td>
<td>[HENS86], [GOLD87], [SMIT87, 92a], [DASG92], [GORD93], [THIE93],</td>
</tr>
<tr>
<td></td>
<td>[KHUR94a], [MICH94], [NG95], [BÄCK96b]</td>
</tr>
<tr>
<td>Partitioning problems</td>
<td>[LASZ90, 91], [COHO91a, b], [COLL91], [HUL91, 92], [JONE91], [DRI92],</td>
</tr>
<tr>
<td></td>
<td>[MARU92, 93], [MUHL92], [LEVI93a, 95, 96], [INAY94], [KHUR94d],</td>
</tr>
<tr>
<td></td>
<td>[HÖHN95], [KAHN95], [MENO95], [BÄCK96b]</td>
</tr>
<tr>
<td>Scheduling (general)</td>
<td>[SANN88], [HOU90, 92], [LAWT92], [SMIT92c], [KIDW93], [ADIT94a, b],</td>
</tr>
<tr>
<td></td>
<td>[AL94], [AND94a], [CHAN94b], [CORC94], [GONZ94], [HO94], [KHUR94d],</td>
</tr>
<tr>
<td></td>
<td>[PIC94], [SCHW94], [SEIB94], [WAH95]</td>
</tr>
<tr>
<td>Graph coloring</td>
<td>[DAVI90, 91], [EIBE94a], [COST95], [FLEU95], [KHUR94b, c]</td>
</tr>
<tr>
<td>Minimum vertex cover</td>
<td>[KHUR94b, c]</td>
</tr>
<tr>
<td>Miscellaneous graph problems</td>
<td>[BÄCK94, 96b], [PALM94a], [ABUA95a, b, 96], [PIGG95]</td>
</tr>
<tr>
<td>Mapping problems</td>
<td>[MANS91], [NEU91], [ANSA92], [SOUL96]</td>
</tr>
<tr>
<td>Maximum clique problem</td>
<td>[BAZG95], [BU95], [FLEU95b], [PARK95a, b]</td>
</tr>
<tr>
<td>Maximum-flow problem</td>
<td>[MUNA93]</td>
</tr>
<tr>
<td>General integer programming</td>
<td>[ABLA79], [BEAN92b], [HADJ92], [RUDO94]</td>
</tr>
<tr>
<td>Satisfiability problem</td>
<td>[JONG89], [FLEU95b], [HAO95], [PARK95a, b]</td>
</tr>
<tr>
<td>Routing problems</td>
<td>[LIEN94a, b], [MARI94]</td>
</tr>
<tr>
<td>Subset sum problem</td>
<td>[KHUR94d]</td>
</tr>
<tr>
<td>Query optimization</td>
<td>[YANG93b], [STIL96]</td>
</tr>
<tr>
<td>Task allocation</td>
<td>[FALC95]</td>
</tr>
<tr>
<td>Load balancing in a database</td>
<td>[ALBA95]</td>
</tr>
</tbody>
</table>
Appendix B. Extensive bibliography

[ABBA95] Abbatista F 1995 Travelling salesman problem solved with GA and ant system Genetic Algorithms Digest (E-mail list) 9 (41) 7.8.1995

[ABLA87] Ablay P 1987 Optimieren mit Evolutionsstrategien Spektrum der Wissenschaft 7 104–15

[ABLA95b] Ablay P 1995 Portfolio-optimization in the context of deciding between projects of different requirements and expected cash-flows, personal communication

[ABRA93a] Abramson D 1993 Scheduling aircraft landing times, personal communication

Management applications and other classical optimization problems

[AVIL95] Avila I 1995 GA to construct school timetables

[AXL88] Axelrod R and Dion D 1988 The further evolution of cooperation Science 242 1385–90

[BÄCK92] Bäck T, Hoffmeister F and Schwefel H-P (ed) 1992 Applications of evolutionary algorithms Technical Report SYS-292, Computer Science Department, University of Dortmund, Germany

[BEAS90] Beasley J E 1990 OR-library: distributing test problems by electronic mail

[BELT93a] Beltrametti L, Marengo L and Tamborini R 1993 A learning experiment with classifier system: the determinants of the dollar–mark exchange rate Discussion Paper 93/3, Department of Economics, University of Trento, Italy

[BIER95] Bierwirth C 1995 A generalized permutation approach to job shop scheduling with genetic algorithms OR Spektrum 17 87–92

[BIET94] Braith J and Nissen V 1994 Combinations of simulation and evolutionary algorithms in management science and economics Ann. OR 52 183–208

[BORAS95] Borasky M E 1995 Financial forecasting, personal communication

[BORK92] Borkowski V 1992 Entwicklung eines Genetischen Algorithmus zur Fahrzeugeinsatzplanung im Werkverkehr Diploma Thesis Department of Economics, University of Hagen, Germany

[BOWD92] Bowden R O 1992 Genetic algorithm based machine learning applied to the dynamic routing of discrete parts Doctoral Dissertation Department of Industrial Engineering, Mississippi State University, MS

[BRAN89] Brandeau M L and Chiu S S 1989 An overview of representative problems in location research Management Sci. 35 645–74

[BRAU90] Braun H 1990 Massiv parallele Algorithmen für kombinatorische Optimierungsprobleme und ihre Implementierung auf einem Parallelrechner Doctoral Dissertation University of Karlsruhe (TH)

[c] 1997 IOP Publishing Ltd and Oxford University Press

[BURN95] Burns T D 1995 GA to solve simple game theory problems Genetic Algorithms Digest (E-mail List) 9 (36) 22.6.1995

[BUSC91] Busch M 1991 Paretooptimale Strategien für ein PPS-System mittels Simulation Diploma Thesis Department of Computer Science, University of Dortmund, Germany

[CAST95a] Castillo L and González A 1995 Fuzzy optimization of distribution networks by using genetic algorithms Technical Report DECSAI-95131, Department of Computer Science and Artificial Intelligence, University of Granada, Spain

[CAST95b] Castillo L and González A 1995 Optimizing the final cost in distribution networks under fuzzy restrictions Proc. 6th Int. Fuzzy Systems Association World Congress (IFSA ’95) vol 2, pp 81–4

[CHAT92] Chattoe E 1992 Evolutionary models of economic agency, personal communication

[CHEN96] Chen S H and Yeh C-H 1996 Genetic programming and the efficient market hypothesis. In: [KOZA96a]

[COLOR91b] Colorni A, Dorigo M and Maniezzo V 1991 Gli algoritmi genetici e il problema dell’orario (Genetic algorithms and the problem of timetables) Ricerca Operativa 60 5–31 (in Italian)

[COLOR92b] Colorni A, Dorigo M and Maniezzo V 1992 ALGODESK: an experimental comparison of eight evolutionary heuristics applied to the QAP problem Report 92-052, Department of Electronics, Milan Polytechnic, Italy

Management applications and other classical optimization problems

[COST95] Costa D, Hertz A and Dubuis O 1995 Embedding of a sequential procedure within an evolutionary algorithm for coloring problems in graphs. J. Heuristics 1

[DAVI90] Davis L 1990 Applying adaptive algorithms to epistatic domains Proc. 9th Int. Joint Conf. on Artificial Intelligence vol 1, ed P B Mirchandani and R L Francis (New York: Wiley) pp 162–4

[DEGE95] Dege V 1995 Sequencing jobs in the car industry (Skoda), personal communication

Management applications and other classical optimization problems

[DEMM92] Demmel A 1992 Entwurf und Realisierung eines Genetischen Algorithmus zur Standortplanung im Distributionsbereich Diploma Thesis Department of Economics, University of Hagen, Germany

[DEO95] Deo S 1995 GA for scheduling of jobs for electronics assembly, personal communication

[DEPP92] Depping J 1992 Kombinierte Touren- und Standortplanung bei der Hausmüllentsorgung mit einem evolutionstrategischen Ansatz Diploma Thesis Department of Computer Science, University of Dortmund, Germany

[DING92] Ding H, El-Keib A A and Smith R E 1992 Optimal clustering of power networks using genetic algorithms TCGA Report 92001, University of Illinois at Urbana-Champaign, IL

[DOSI93] Dosi G, Marengo L, Bassanini A and Valente M 1993 Microbehaviours and dynamical systems: economic routines as emergent properties of adaptive learning Path-Dependent Economics ed C Antonelli and P A David (Dordrecht: Kluwer)

[EBEL90] Ebeling W 1990 Applications of evolutionary strategies Syst. Analysis Modeling Simulation 7 3–16

[EDEE95] Eddelbüttel D 1995 Optimized stock investment, personal communication

[ERGU95] Ergul A 1995 Timetabling of exams and classes Diploma Thesis Department of Economics, University of Hagen, Germany

[ESHE95] Eshelman L J (ed) 1995 Proc. 6th Int. Conf. on Genetic Algorithms (San Fransico, CA: Morgan Kaufmann)

[FALK94b] Falkenauer E 1994 A new representation and operators for genetic algorithms applied to grouping problems Evolutionary Computat. 2 123–44

[FANG92] Fang H L 1992 Investigating GAs for scheduling MSc Dissertation Department of Artificial Intelligence, University of Edinburgh, Edinburgh, UK

[FOGA89] Fogarty T C 1989 Learning new rules and adapting old ones with the genetic algorithm Artificial Intelligence in Manufacturing, Proc. 4th Int. Conf. on Applications of Artificial Intelligence in Engineering ed G Rzesvki G (Berlin: Springer) pp 147–8

[FOGA94b] Fogarty T C and Ireson N S 1994 Evolving Bayesian classifiers for credit control—a comparison with other machine learning methods IMA J. Math. Appl. Business Ind. 5 63–75

data bases: the IDIOMS project Proc. AMSE Int. Conf. on Signals and Systems (Warsaw, 1991) vol 1, pp 213–19

presses. In: [ESHE95] pp 617–24

[FOGE90] Fogel D B 1990 A parallel processing approach to a multiple traveling salesman problem using evolutionary
programming Proc. 4th Ann. Symp. on Parallel Processing ed L H Canter (Fullerton, CA: IEEE Orange County
Computer Society) pp 318–26

Diego, CA

[FOGE93a] Fogel D B 1993 Evolving behaviors in the iterated prisoner’s dilemma Evolutionary Computat. 1 77–97

[FOGE93b] Fogel D B and Atmar W (ed) 1993 Proc. 2nd Ann. Conf. on Evolutionary Programming (San Diego, CA:
Evolutionary Programming Society)

[FOGE93c] Fogel D B 1993 Applying evolutionary programming to selected travelling salesman problems Cybern.
Syst. 24 27–36

[FOGE93d] Fogel D B 1993 Empirical estimation of the computation required to reach approximate solutions to the
travelling salesman problem using evolutionary programming. In: [FOGE93b] pp 56–61

[FOGE95a] Fogel D B 1995 Evolutionary computation Toward a New Philosophy of Machine Intelligence (Piscataway,
NJ: IEEE)

[FOGE95b] Fogel D B 1995 On the relationship between the duration of an encounter and evolution of cooperation
in the iterated prisoner’s dilemma Evolutionary Computat. 3 349–63

[FOGE96] Fogel D B 1996 1. Inventory control project for a major engine manufacturer in the USA; 2. Scheduling
delivery fuel trucks for a major oil company in the USA; 3. Online reassignment of computer tasks across a suite
of heterogeneous computers; 4. Evolved neural network predictor to handle pension money based on investing
in commodities; 5. Factory scheduling for a finishing plant for a major US clothing company; 6. Optimizing the
cutting of fabric; 7. Mission planning software for the US Government and for military applications; personal
communication with D B Fogel

[FORR93] Forrest S (ed) 1993 Proc. 5th Int. Conf. on Genetic Algorithms (San Mateo, CA: Morgan Kaufmann)

[FUCH83] Fuchs F and Maier H A 1983 Optimierung des Lastflusses in elektrischen Energieversorgungsnetzen mittels
Zufallszahlen Archiv Elektrotechnik 66 85–94

[FUJI87] Fujiki C and Dickinson J 1987 Using the genetic algorithm to generate LISP source code to solve the
prisoner’s dilemma. In: [GREF87a] pp 236–45

to dispatching rule-based FMS scheduling Proc. IEEE Int. Conf. On Robotics and Automation (Piscataway, NJ:
IEEE) pp 190–5

production scheduling Automatic Control—World Congress 1993 (Sydney, 18–23 July 1993) vol 4, ed G C Goodwin
and R J Evans (Oxford: Pergamon) pp 353–6

[FULK93a] Fullkerson W 1993 Scheduling in a foundry, personal communication

[FULK93b] Fullkerson W 1993 Scheduling assembly lines, personal communication

pp 430–6

data bases: the IDIOMS project Proc. AMSE Int. Conf. on Signals and Systems (Warsaw, 1991) vol 1, pp 213–19

[GADE91] de Garis H 1991 Genetic programming: building artificial nervous systems with genetically programmed
Management applications and other classical optimization problems

[GEUR93] Geurts M 1993 Job shop scheduling, personal communication

[GORC91c] Gorges-Schleuter M 1991 Genetic algorithms and population structures. A massively parallel algorithm Doctoral Dissertation Department of Computer Science, University of Dortmund, Germany

[GREEN94] Greenwood G 1994 Preventative maintenance tasks Genetic Algorithms Digest (E-mail List) 8 (15) 10.5.1994

 [GREF85a] pp 112–20

[GREF87a] Grefenstette J J (ed) 1987 Genetic algorithms and their applications Proc. 2nd Int. Conf. on Genetic

 and Simulated Annealing ed L Davis (San Mateo, CA: Morgan Kaufmann) pp 42–59

 26.1.1995

[GUPT93b] Gupta M C, Gupta Y P and Kumar A 1993 Genetic algorithms application in a machine scheduling

 Algorithms in Production Scheduling List (E-mail List) 15.3.1995

[HADD95b] Hadinoto D 1995 Combinations of branch&bound techniques with genetic algorithms for scheduling
 problems Genetic Algorithms in Production Scheduling List (E-mail List) 4.9.1995

[HADD92] Ben Hadj-Alouane A and Bean J C 1992 A genetic algorithm for the multiple-choice integer program
 Technical Report 92-50, Department of Industrial and Operations Research, University of Michigan, Ann Arbor,
 MI

[HAMM94] Hammel U and Bäck T 1994 Evolution strategies on noisy functions—how to improve convergence
 properties. In: [DAVI94a] pp 159–68

 Dissertation Technical University of Berlin

[HANS95] Hansen S 1995 PROFIT, Software für die Prognose, Planung und Steuerung der Produktion. In:
 [BIET95b] pp 175–80

 problems. In: [PEAR95] pp 289–92

[HART95] Hartley S J 1995 GA to solve the Boolean satisfiability problem Genetic Algorithms Digest (E-mail List)
 9 (36) 22.6.1995

[HART96] Hartmann S 1996 Projektplanung bei knappen Mitteln PhD Project Faculty of Social and Business Sciences,
 Christian-Albrechts-University, Kiel

[HEIS94b] Heistermann J 1994 GA to solve the Boolean satisfiability problem Genetic Algorithms in Production
 Scheduling List (E-Mail List) 23.1.1995

 of Bionics, Technical University of Berlin

 pp 188–92

 pp 231–6

 Programmierung Doctoral Dissertation University of Karlsruhe, Germany

 Proc. 1st Int. Conf. on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation release 97/1

F1.2:33
Management applications and other classical optimization problems

[HILL94] Hillebrand E and Stender J (ed) 1994 Many-Agent Simulation and Artificial Life (Frontiers in Artificial Intelligence and Applications 25) (Amsterdam: IOS)

[HINT94] Hinterding R 1994 A new way of solving the bin packing problem using GAs Genetic Algorithms Digest (E-mail List) 8 (15) 10.5.1994

[HIRA95] Hirayama K 1995 Slab design problem in steel production (involves sequencing order plates, deciding slab sizes and total number of slabs) Genetic Algorithms Digest (E-mail List) 9 (37) 28.6.1995

[HO96] Ho T H 1996 Finite automata play repeated prisoner’s dilemma with information processing costs J. Econ. Dynamics Control 20 173–207

[HOEH96] Hoehfeld M 1996 Load management for power stations at Siemens, Germany, talk presented at: ‘Evolutionary Algorithms and Their Applications’ Seminar, Dagstuhl, Germany, March 1996

[HUGH90] Hughes M 1990 Improving products and process—Nature’s way Ind. Management Data Syst. 6 22–5

Management applications and other classical optimization problems

[IRES94] Ireson N S 1994 Evolving a classifier for the TSB loan application data Research Paper University of the West of England, Bristol, UK

[ISHI94] Ishibuchi H, Yamamoto N, Murata T and Tanaka H 1994 Genetic algorithms and neighborhood search algorithms for fuzzy flowshop scheduling problems Fuzzy Sets Syst. 67 81–100

[JACK95] Jackson K and Weare R 1995 Generating exam timetables, personal communication

[JULS96] Julstrom B A 1996 Contest length, noise, and reciprocal altruism in the population of a genetic algorithm for the iterated prisoner’s dilemma. In: [KOZA96b]

[KEAR95] Kearns B 1995 1. A real-life variation of the travelling salesperson problem for several system installers under several constraints; 2. Local and wide area network design to maximize performance on three different goals Genetic Programming List (E-mail List) 8.3.1995

[KEI95] Keijzer M 1995 Optimizing the layout for telecommunication networks in developing countries Genetic Programming List (E-mail List) 13.4.1995

[KEM95c] van Kemenade C H M 1995 Evolutionary computation in air traffic control planning Report CS-R 9550, Centrum voor Wiskunde en Informatica, Amsterdam

[LANG96] Langdon W B 1996 Scheduling maintenance of electric power transmission networks using genetic programming. In: [KOZA96b]
[LAWT92] Lawton G 1992 Genetic algorithms for schedule optimization AI Expert 7 23–7
[LEBA94] LeBaron B 1994 An artificial stock market, talk presented at: MIT AI Vision Seminar Colloquium, Stanford
[LB92] Li Y 1992 Heuristics and exact algorithms for the quadratic assignment problem Doctoral Dissertation Pennsylvania State University, PA
[LIEN94b] Lienig J and Thulasiraman K 1994 A genetic algorithm for channel routing in VLSI circuits Evolutionary Computat. 1 293–311
[LIM95] Lim S 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 18.9.1995
[LIND91] Lindgren K 1991 Evolutionary phenomena in simple dynamics Artificial Life II (Santa Fe Institute Studies in the Sciences of Complexity X) ed C Langton, C Taylor, J D Farmer and S Rasmussen (Reading, MA: Addison-Wesley)
[LING92a] Ling S E 1992 Integrating a Prolog assignment program with genetic algorithms as a hybrid solution for a polytechnic timetable problem MSc Dissertation School of Cognitive and Computing Sciences, University of Sussex, UK
Management applications and other classical optimization problems

[MACD95] MacDonald C C J 1995 University timetabling problems Timetabling Problems List (E-mail List) 11.4.1995

[MANI91] Maniezzo V 1991 The rudes and the shrewds: an experimental comparison of several evolutionary heuristics applied to the QAP problem Report 91-042, Department of Electronics, Milan Polytechnic, Italy

[MARE92b] Marengo L 1992 Coordination and organizational learning in the firm J. Evolutionary Econ. 2 313–26

Management applications and other classical optimization problems

[MAC92] Mazięjewski S 1992 The vehicle routing and scheduling problem with time window constraints using genetic algorithms Diploma Thesis Department of Logic, Complexity and Deduction, University of Karlsruhe (TH), Germany. Also Norges Tekniske Høgskole, Institutt for Datateknikk og Telematik, Norway

[MES95] Mesman B 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 18.9.1995

[MICH95] Micheletti A 1995 Short term production scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 27.4.1995

[MILL98] Miller J 1989 The coevolution of automata in the repeated prisoner’s dilemma Working Paper 89-003, Santa Fe Institute, CA

[MILL93] Mills G 1993 Scheduling trains, personal communication

[MÜH91c] Mühlenbein H 1991 Darwin’s continent cycle theory and its simulation by the prisoner’s dilemma Complex Syst. 5 459–78
Genetic Algorithms in Production

[NAPI89] Napierala G 1989 Ein paralleler Ansatz zur Lösung des TSP. Diploma Thesis, University of Bonn, Germany

Management applications and other classical optimization problems

[NISS94e] Nissen V 1994 Solving the quadratic assignment problem with clues from Nature IEEE Trans. Neural Networks Special Issue on evolutionary computation 5 66–72

[NOCH90] Noche B 1990 Simulation in Produktion und Materialfluss Entscheidungsorientierte Simulationsumgebung (Cologne: TÜV Rheinland)

[NORM95] Norman B A 1995 Job shop scheduling Genetic Algorithms Digest (E-mail List) 9 (26) 1.5.1995

[OMAN96] Oman S 1996 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 21.3.1996

[ORDI95] Ordieres Meré J B 1995 Best cut bar problem to minimize waste material Genetic Algorithms in Production Scheduling List (E-mail List) 30.1.1995

[PALM94a] Palmer C C 1994 Application of GP techniques to various graph theoretic problems Genetic Programming List (E-mail List) 5.8.1994

[PARK95c] Park L-J 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 20.4.1995

[PARK95d] Park L-J 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 5.8.1995

[PESC93] Pesch E 1993 Machine learning by schedule decomposition Research Memorandum 93-045, Limburg University, Belgium

[PETE90] Peterson C 1990 Parallel distributed approaches to combinatorial optimization: benchmark studies on travelling salesman problem Neural Comput. 2 261–9

[PORT95] Portmann M-C 1995 Flowshop scheduling with GA and branch&bound techniques Genetic Algorithms in Production Scheduling List (E-mail List) 9.9.1995

[QUEI95] Queiros F 1995 GA to solve timetabling problem Timetabling Problems List (E-mail List) 26.6.1995

[QUIN95] Quinn G R 1995 Two-stage production scheduling problem, personal communication

[REEV93] Reeves C R 1993 Bin packing, personal communication
[REPP85] Reppenhagen R 1985 Adaptive Suchalgorithmen Diploma Thesis Department of Mathematics/Computer Science, University of Paderborn, Germany

[ROGN94] Rognoni R 1994 Building financial trading models, personal communication
[ROGN95] Rognoni R 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 9.3.1995

[SCHAE90] Schaffer J D (ed) 1989 Proc. 3rd Int. Conf. on Genetic Algorithms (George Mason University, June 4–7) (San Mateo, CA: Morgan Kaufmann)

[SCHA94] Schack B 1994 Scheduling in a liquid petroleum pipeline, personal communication

[SCHL96] Schlichtmann U 1996 Genetische Algorithmen zur Lösung von Tourenplanungsproblemen Diploma Thesis Fachbereich Wirtschaftswissenschaften, Fernuniversität Hagen, Germany

[SCHW72] Schwefel D 1972 Gesundheitsplanung im departamento del valle del cauca Report of the German Development Institute, Berlin: German Development Institute

Management applications and other classical optimization problems

[SIMP94a] Simpson A R, Dandy G C and Murphy L J 1994 Genetic algorithms compared to other techniques for pipe optimization ASCE J. Water Resources Planning Management 120 (4)

[SING94] Singleton A 1994 Genetic programming with C++ Byte 19 171–6

[SIRAG95] Sirag D 1995 Forge scheduling and elevator dispatching (scheduling) Genetic Algorithms in Production Scheduling List (E-mail List) 21.2.1995

[SMIT92a] Smith R E and Goldberg D E 1992 Diploidy and dominance in artificial genetic search Complex Syst. 6 251–85

[SMIT92b] Smith W 1992 Bin packing, personal communication

[SPON89] Sponsler J L 1989 Genetic algorithms applied to the scheduling of the hubble space telescope Telematics Informatics 6 181–90

[STAC94] Stache U 1994 Untersuchung der Eignung von Genetischen Algorithmen in der simultanen Termin- und Kapazitätsplanung Doctoral Dissertation Department of Computer Science, University of Dortmund, Germany

© 1997 IOP Publishing Ltd and Oxford University Press

Handbook of Evolutionary Computation release 97/1 F1.2:46
Management applications and other classical optimization problems

[STAW95] Stawowy A 1995 Scheduling, routing, layout and grouping Genetic Algorithms in Production Scheduling List (E-mail List) 21.4.1995

[SYLO93] Sylogic BV 1993 Prediction of the bids of pilots for promotion to other aircraft using rule induction and a genetic algorithm; information contained in a commercial video produced by Sylogic BV, PO Box 26, 3900 DA Houten, The Netherlands

[SZAK95] Szakal L 1995 Job shop scheduling Genetic Algorithms in Production Scheduling List (E-mail List) 15.3.1995

[TERA94] Terano T and Muro Z 1994 On-the-fly knowledge base refinement by a classifier system AICOM 7 86–97
[TERA95] Terano T and Yoshinaga K 1995 Integrating machine learning and simulated breeding techniques to analyze the characteristics of consumer goods. In: [BIET95a] pp 211–24
[TUSO94a] Tuson A L 1994 The use of genetic algorithms to optimise chemical flowshops of unrestricted topology Chemistry Part II Thesis Oxford University, UK
[VALE94] Valenzuela C L and Jones A J 1994 Evolutionary divide and conquer (I): a novel genetic approach to the TSP Evolutionary Computat. 1 313–33
[VERE95b] Vere S A 1995 Fraud detection at Bank of America, personal communication
[VOGE95d] Vogel S 1995 Speeding up a genetic algorithm for the optimization of periodic networks Technical Report, Hildesheimer Informatik-Berichte 21/95, Department of Mathematics, University of Hildesheim
[VOLT93] Volta G 1993 Job shop scheduling, personal communication
[WERN84] Werner F 1984 Zu Lösung spezieller Reihenfolgeprobleme Doctoral Dissertation Technical University Magdeburg, German Democratic Republic
Management applications and other classical optimization problems

[YAO95a] Yao X (ed) 1995 *Progress in Evolutionary Computation* (Lecture Notes in Artificial Intelligence 956) (Berlin: Springer)

[YIN94] Yin X 1994 Investigation on the application of genetic algorithms to the load flow problem in electrical power systems *Doctoral Thesis* Electrotechnics and Instrumentation Laboratory, Université Catholiques de Louvain, Louvain-La-Neuve, Belgium

[YONG95] Yong J 1995 Production scheduling for a steel mill with 3 shifts per day *Genetic Algorithms in Production Scheduling Listing (E-mail List)* 18.8.1995

[ZIMM85] Zimmermann A 1985 *Evolutionsstrategische Modelle bei einstufiger, losweiser Produktion* (Frankfurt am Main: Lang)