Plant Biotechnology:
the genetic manipulation of plants

Second edition

Adrian Slater
Nigel W. Scott
Mark R. Fowler

De Montfort University

OXFORD
UNIVERSITY PRESS
List of abbreviations

1 Plant genomes: the organization and expression of plant genes 1

Introduction 1
DNA, chromatin, and chromosome structure 1
Chromatin 4
An introduction to gene structure and gene expression 6
Gene structure and expression in a eukaryotic protein-coding gene 6
Translation 10
Regulation of gene expression 16
Chromatin conformation 16
Gene transcription 16
RNA modification, splicing, turnover, and transport 18
Translation 20
Post-translational modification 21
Localization 21
Protein turnover 21
Conclusions 22

Implications for plant transformation 22
Examples of promoter elements used to drive transgene expression 26

Protein targeting 26
Heterologous promoters 26
Genome size and organization 27

Arabidopsis and the new technologies 28
Genome-sequencing projects—technology, findings, and applications 28
Biotechnological implications of the AGI 31
Crop plant genome sequencing 31

Summary 33

Further reading 34
2 Plant tissue culture

Introduction

Plant tissue culture
Plasticity and totipotency
The culture environment
Plant cell culture media
Plant growth regulators

Culture types
Callus
Cell-suspension cultures
Protoplasts
Root cultures
Shoot tip and meristem culture
Embryo culture
Microspore culture

Plant regeneration
Somatic embryogenesis

CASE STUDY 2.1 Cereal regeneration via somatic embryogenesis from immature or mature embryos

Organogenesis

Integration of plant tissue culture into plant transformation protocols

Summary

Further reading

3 Techniques for plant transformation

Introduction

Agrobacterium-mediated gene transfer
The biology of Agrobacterium

The Ti plasmid
Ti-plasmid features

The process of T-DNA transfer and integration
Step 1. Signal recognition by Agrobacterium
Step 2. Attachment to plant cells
Step 3. Induction of vir genes
Step 4. T-strand production
Step 5. Transfer of T-DNA out of the bacterial cell
Step 6. Transfer of the T-DNA and Vir proteins into the plant cell and nuclear localization
Strategies for engineering herbicide tolerance 111

CASE STUDY 5.1 Glyphosate tolerance 111

CASE STUDY 5.2 Phosphinotricin 121

Prospects for plant detoxification systems 123

Commercialization of herbicide-tolerant plants to date 124

CASE STUDY 5.3 Engineering imidazolinone tolerance by targeted modification of endogenous plant genes 126

The environmental impact of herbicide-tolerant crops 127

The development of super-weeds 129

Summary 130

Further reading 131

6 The genetic manipulation of pest resistance 133

Introduction 133

The nature and scale of insect pest damage to crops 134

GM strategies for insect resistance: the Bacillus thuringiensis approach 134

The use of B. thuringiensis as a biopesticide 138

Bt-based genetic modification of plants 138

CASE STUDY 6.1 Resistance of Bt maize to the European corn borer and other pests 140

The problem of insect resistance to Bt 141

The environmental impact of Bt crops 145

The Copy Nature strategy 146

CASE STUDY 6.2 Cowpea trypsin inhibitor 149

Insect-resistant crops and food safety 153

Summary 153

Further reading 153

7 Plant disease resistance 156

Introduction 156

Plant–pathogen interactions 157

Prokaryotes 158

Fungi and water moulds 158

Viruses 160

Existing approaches to combating disease 160
Natural disease-resistance pathways: overlap between pests and diseases
Anatomical defences 162
Pre-existing protein and chemical protection 162
Inducible systems 163
Systemic responses 170
Biotechnological approaches to disease resistance 172
Protection against pathogens 173
Antimicrobial proteins 174
Transgenic crops for food safety 176
Induction of HR and SAR in transgenic plants 177
CASE STUDY 7.1 The BASF potato 178
Developments for the future 179
Other transgenic approaches 179
Future prospects for breeding 179
CASE STUDY 7.2 Xanthomonas spp. 180
Summary 181
Further reading 182

8 Reducing the effects of viral disease 184

Introduction 184
Types of plant virus 184
RNA viruses 186
Entry and replication: points of inhibition 188
How has the agricultural community dealt with viruses? 189
CASE STUDY 8.1 Developments in the sugar beet industry 190
The transgenic approach: PDR 192
Interactions involving viral proteins 192
CASE STUDY 8.2 Arabis mosaic virus 194
RNA effects 197
Some non-PDR approaches 202
CASE STUDY 8.3 DNA viruses 203
What has been commercialized in Western agriculture? 204
Yellow squash and zucchini 204
Papaya 205
Potato 205
Risk 206
Summary 208
Further reading 209
9 Strategies for engineering stress tolerance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>212</td>
</tr>
<tr>
<td>The nature of abiotic stress</td>
<td>212</td>
</tr>
<tr>
<td>The nature of water-deficit stress</td>
<td>214</td>
</tr>
<tr>
<td>Different abiotic stresses create a water deficit</td>
<td>214</td>
</tr>
<tr>
<td>CASE STUDY 9.1 Glycine betaine production</td>
<td>218</td>
</tr>
<tr>
<td>Targeted approaches to manipulating tolerance to specific water-deficit stresses</td>
<td>222</td>
</tr>
<tr>
<td>Alternative approaches to salt stress</td>
<td>222</td>
</tr>
<tr>
<td>CASE STUDY 9.2 Na+/H+ antiporters improve salt tolerance in transgenic plants</td>
<td>223</td>
</tr>
<tr>
<td>Alternative approaches to cold stress</td>
<td>224</td>
</tr>
<tr>
<td>CASE STUDY 9.3 The COR regulon</td>
<td>224</td>
</tr>
<tr>
<td>Tolerance to heat stress</td>
<td>228</td>
</tr>
<tr>
<td>Secondary effects of abiotic stress: the production of ROS</td>
<td>229</td>
</tr>
<tr>
<td>Strategy 1: Expression of enzymes involved in scavenging ROS</td>
<td>232</td>
</tr>
<tr>
<td>Strategy 2: Production of antioxidants</td>
<td>234</td>
</tr>
<tr>
<td>Summary</td>
<td>234</td>
</tr>
<tr>
<td>Further reading</td>
<td>234</td>
</tr>
</tbody>
</table>

10 The improvement of crop yield and quality

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>The genetic manipulation of fruit ripening</td>
<td>237</td>
</tr>
<tr>
<td>CASE STUDY 10.1 The genetic manipulation of fruit softening</td>
<td>238</td>
</tr>
<tr>
<td>CASE STUDY 10.2 The genetic modification of ethylene biosynthesis</td>
<td>240</td>
</tr>
<tr>
<td>CASE STUDY 10.3 Modification of colour</td>
<td>243</td>
</tr>
<tr>
<td>CASE STUDY 10.4 Golden Rice</td>
<td>247</td>
</tr>
<tr>
<td>Engineering plant protein composition for improved nutrition</td>
<td>251</td>
</tr>
<tr>
<td>The genetic manipulation of crop yield by enhancement of photosynthesis</td>
<td>256</td>
</tr>
<tr>
<td>Manipulation of light harvesting and the assimilate distribution: phytochromes</td>
<td>258</td>
</tr>
<tr>
<td>Direct manipulation of photosynthesis: enhancement of dark reactions</td>
<td>261</td>
</tr>
<tr>
<td>Summary</td>
<td>263</td>
</tr>
<tr>
<td>Further reading</td>
<td>263</td>
</tr>
</tbody>
</table>
11 Molecular farming

Introduction
Carbohydrates and lipids
Carbohydrate production
CASE STUDY 11.1 Starch
CASE STUDY 11.2 Polyfructans
Metabolic engineering of lipids
CASE STUDY 11.3 Bioplastics
Molecular farming of proteins
Production systems
CASE STUDY 11.4 The oleosin system: hirudin and insulin production
Medically related proteins
CASE STUDY 11.5 Custom-made antibodies
CASE STUDY 11.6 Edible vaccines
Economic and regulatory considerations for molecular farming
Summary
Further reading

12 Science and society: public acceptance of genetically modified crops

Introduction
Public concerns
The current state of transgenic crops
Who has benefited from these first-generation GM crops?
What will drive the development of the future generations of GM crops?
Concerns about GM crops
Antibiotic-resistance genes
Herbicide resistance and super-weeds
Gene containment
Big business
Food safety
The regulation of GM crops and products
The EU
The USA
Summary
Further reading
13 Beyond genetically modified crops

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td>‘Greener’ genetic engineering</td>
<td>343</td>
</tr>
<tr>
<td>Genetic manipulation of complex agronomic traits</td>
<td>345</td>
</tr>
<tr>
<td>Identification of genes associated with desirable traits</td>
<td>348</td>
</tr>
<tr>
<td>Genetic mapping</td>
<td>348</td>
</tr>
<tr>
<td>Quantitative trait loci</td>
<td>352</td>
</tr>
<tr>
<td>Investigating gene function by reverse genetics</td>
<td>354</td>
</tr>
<tr>
<td>Insertional mutagenesis</td>
<td>354</td>
</tr>
<tr>
<td>TILLING</td>
<td>355</td>
</tr>
<tr>
<td>Understanding gene function within the genomic context: functional genomics</td>
<td>357</td>
</tr>
<tr>
<td>Transcriptomics</td>
<td>357</td>
</tr>
<tr>
<td>Proteomics</td>
<td>360</td>
</tr>
<tr>
<td>Interactomics</td>
<td>362</td>
</tr>
<tr>
<td>Metabolomics</td>
<td>362</td>
</tr>
<tr>
<td>Systems biology</td>
<td>362</td>
</tr>
<tr>
<td>Summary</td>
<td>363</td>
</tr>
<tr>
<td>Further reading</td>
<td>363</td>
</tr>
</tbody>
</table>

Index | 367 |
ABA, see abscisic acid

abscisic acid 6–7

disease resistance 166

regulation of gene expression

25–6, 227

response elements 25–6

stress resistance 226

synthesis 245

in tissue culture 42–3

ACC oxidase 238–9

ACC synthase 243–5

ACC243

ACCase, see acetyl CoA carboxylase

acclimation, cold 224–6

acetohydroxyacid synthase (AHAS), see acetolactate synthase (ALS)

acetolactate synthase (ALS) 88, 108–10, 125–6

acetosyringone 60

acetyl CoA carboxylase (ACCase) 108–9, 277

ACNFP, see Advisory Committee on Novel Food and Processes

ACRE, see Advisory Committee on Release into the Environment

ADP-glucose 268–71; see also starch synthesis

Advisory Committee on Novel Foods and Processes 323, 333

Advisory Committee on Releases to the Environment 101, 333

Affymetrix GeneChip 358

AFLP, see amplification fragment length polymorphism

African cassava mosaic virus 159

agar 41, 47

AgrEvo 121, 123, 141120, 124, 139

Agrobacterium rhizogenes 65, 161, 194

Agrobacterium tumefaciens 55–8

CP4 gene 117, 120–1, 125

crown gall disease 54–6, 158, 161

ACS gene 119

plant transformation 52, 54–5, 61–7, 79, 91

strains 60, 64

super-virulent 64

T-DNA 55–67, 79–80, 91–4, 98–100, 139, 158, 354

Ti plasmid 55–9, 63, 80, 91–2, 148, 245

Vir proteins 56–60, 79, 91–2

Agrobacterium-mediated transformation 52, 54–5, 61–7, 79, 91

agrochemical industry 106, 121, 127

albumin engineering endosperm proteins 257

human serum 305–6

Alcaligenes eutrophus 113, 268, 282–4

alfalfa defensin gene 175

economics of antibody production 309

herbicide tolerance 125

insect resistance 131

oxidative stress 232–4

somatic embryogenesis 48–9

vaccine production 295

yield 281

alternative splicing 18–19

amino acid 10–15, 21, 38–42, 256–8; see also specific named amino acids

essential 107–8

aromatic 111, 114, 116

branched chain, 108, 113, 126

polymers 285–6

aminocyclopropane, see ACC

aminomethylphosphonic acid (AMPA) 119–20

ammonia 24, 107, 122

AMPA, see aminomethylphosphonic acid

amplification fragment length polymorphism (AFLP)

in plant breeding 179, 351–2

α-amylase 20, 25

inhibitor 150–1, 165

signal peptide 300–1

anatomical defence 162

Animal and Plant Health Inspection Service 309, 338

anthocyanins, and flower colour 246, 248–9

anthranilate 115

antibiotic resistance

concerns about selectable marker genes 323–4, 334, 337, 343–4

as selectable marker 68–9, 86–8

antibodies

custom-made antibodies 300–3

disease resistance 179, 202

medically related proteins 296–300, 309–10

plantibodies 261

production systems 279–80

protein arrays 361

starch modification 271

anticodon 12–16

antimicrobial proteins 163–4

disease resistance 174

in transgenic plants 174–6

see also defensin proteins, PR proteins

antioxidant 230–4

antisense RNA 96–7, 197–204, 240–7, 271, 280

APETALA 346

APHIS, see Animal and Plant Health Inspection Service

apomixis 326, 329

apple trees, disease resistance and transgenic plants 173, 175

Arabidopsis

gene 28–32, 357–60

transformation in planta 64

arabidopsis AcMV, coat protein-mediated resistance 190–2

arachidonic acid 281

arginine vasopressin 307

Argonaute 7–8
aroA gene 88, 119
aroanetate 115, 255
Arthrobacter globiformis 218–20
ascorbate 230–4, 243, 256
monodehydroascorbate 231–2
dehydroascorbate 230–2
peroxidase 230–4
ascorbic acid, see ascorbate, vitamin C
asters yellow 158; see also
phytoplasma, plant diseases
asulam 108
atrazine 108, 110, 123–5
autoimmune disease 310
auxin; see also indoleacetic acid
classification of 42
herbicide action 109, 116
in crown gall disease 55–7
regulation of gene expression 19, 25, 85
response elements 19, 25
in tissue culture 42–5, 51
in tobacco transformation 63, 65
T-DNA biosynthetic genes 56–7, 245, 247
Aventis 121, 139–41
avidin, production in genetically engineered plants 294–5, 309
avirulence 164–5, 168–9; see also
gene-to-gene interactions, HR response
B
Bacillus amyloliquifaciens 273, 275
Bacillus anthracis 310
Bacillus subtilis 120, 221, 268, 272–3
Bacillus thuringiensis 134–8, 142, 321, 344; see also Bt
bacterial pathogens of plants 158–9; see also specific names
bait test 190
bar gene 88, 123, 125
barley
codon usage 14
diseases of 158–9
genome 27, 33
PR proteins in transgenic plants 165, 173–4
RIP 174
stress resistance 213, 220, 223
tissue culture 47
α-thionin 174
barley yellow dwarf virus (BYDV) 159
coat protein-mediated resistance 193
Basta 110, 112, 121–2, 125
beet necrotic yellow vein virus (BNYVV)
bait test 189–90
coop protein-mediated resistance 193
molecular techniques for detection 191
rhizomania 189
rhizomania resistant crops 191
risk of recombination 208
structure 188
Bellagio Apomixis Declaration 329
betaine aldehyde dehydrogenase 218–20
selectable marker for chloroplast transformation 72, 89
betaine, see glycine betaine
betalains, and flower colour 248
bialaphos 86, 108, 121–2; see also
glufosinate, phosphinothricin
binary vectors 91–101, 195–6
basic features 91–3
evolution of 93
families of 92–5
optimization of components 92–9
biofortified rice 255
biotics 66–71
gene rearrangement 67
transformation of rice 68–71
see also direct gene transfer, particle bombardment
biopesticide 138
biopharmaceuticals 286, 305–7
bioplastics 282–5
bimolecular 230
Bipolaris maydis, and leaf blight 156, 159
blight 156–161, 175–80
Bollgard 139, 142–5
Borlaug, Norman E. 266, 345
Botrytis spp 173
Brassica napus (canola, oilseed rape) 220, 290–1; see also oilseed rape
Brazil nuts 257
bromoxynil 88, 108, 113, 123–5
Bt cotton 138, 141, 144–5; see also
Bollgard, cotton
Bt crops 138–46, 306; see also
individual crops
Bt genes 135–9; see also cry genes
Bt maize 140–6; see also maize
bulk enzymes 285
cacao swollen shoot virus (CSVV) 159
Calgene 125, 238–42
calls 44–52
Calvin cycle 259–62
manipulation of enzymes 262
cancer
anticancer antibodies 300
anticancer biopharmaceuticals 305
canola, see oilseed rape
carbohydrate
crop yield 258–62
molecular farming 267–76
in tissue culture 41
β-carotene 230–2, 246–52
carotenoid biosynthesis 107–8, 232, 246–7, 347
flower colour 248
fruit 247
Golden Rice 251–5
carrot 49–50, 310; see also somatic embryogenesis
CAT, see chloramphenicol acetyltransferase
catalase 230
cauliflower mosaic virus (CaMV)
classification and structure 185
35S promoter 23, 69, 80, 103, 117, 119, 139, 144, 147–9, 152, 240, 273
structure/activity relationship 80–1
virus resistance 194–5
CBF transcription factor 225–7, 360
celery 218
CEL-1 nuclease 355
cell culture 37–43
cell suspension culture 66, 74
cellulases, production in genetically engineered plants 242
chalcone synthase 25, 199, 248
chicory 272–4
chilling 220–2, 224–7; see also cold stress
chitinase 164
PR proteins 164–5
in transgenic plants 173–4
chloramphenicol acetyltransferase 81, 87, 91
chloroplast 107–8
genetic engineering 310, 325–6, 344
genome 1–4
proteins produced in chloroplasts 310
starch 268, 270
transformation of 71–2
transgenic proteins expression levels 300
transit peptide 22, 26, 117–9
see also photosynthesis
chlorophyll 107, 232
chlorosome 108, 110, 125–7
choline 217–20
dehydrogenase (CDH) 218–20
monooxygenase (CMO) 218–20
oxidase (COD) 218–20
-CTOsulphate 217
chloroplast 114–5
chromatin 1, 4–5, 16, 58, 61, 98; see also gene expression
chromoplast 107
cis elements 16–7, 24–6
citrus tristeza virus (CTV)
coat protein-mediated resistance 193
cross protection 189
Cladosporium fulvum 177
clean-gene technology 95, 100–1, 310, 324–5
coat protein-mediated resistance (CPMR) 193–4
arabis mosaic nepovirus case study 194–97
multiple pathogen-derived resistance strategies 198
risk of transcapsidation 206
virus-like particles (VLPs) 193
see also genome structure
codon 11–21
codon usage 14, 99, 276, 290
cointegrative vectors 91
cold stress 213, 224–7; see also chilling
Coleoptera 134–5, 138, 140, 142, 151
codonar美联语ney 32
Colorado beetle 134, 139, 142
comovirus
movement proteins 187–8
structure and translation strategy 187–8
compatible solute 216–8, 221–2; see also osmolyte, osmoprotectant
consults about GM crops
antibiotic resistance 101, 323–4
Golden Rice 253
herbicide resistance 128–30, 324–5
pest resistance 145–6
Copy Nature strategy, and insect resistance 146–8, 152
COR regulon 224–227
corn rootworm 139, 142
corn, see maize
Corynebacterium spp. 158
co-suppression 197–9, 241–2, 263, 280
COTyptosis resistant 117, 119, 125, 127
insect damage 134, 139, 141–5, 149, 153
see also Bt cotton, Bollgard, bollworm, leafworm
cowpea mosaic virus (CPMV)
capsid structure 187, 195
gene structure and translation strategy 187–8
movement proteins 188
vector for protein synthesis 293, 302
cowpea trypsin inhibitor (CpTI) 148–51
Cre-lox 100
crown gall disease 55–6
CRT/DRE 225–7
cry gene 134–48
cry1Aa 135, 136–7
cry1Ab 135, 136, 139–40, 142, 146, 148
cry1Ac 135, 136, 139–40, 142, 144–5, 148
cry1F 135, 140
cry2A 135
cry3A 135, 137, 139
cry3Bb 135, 139–40, 142
cry9C 135, 139, 140–1
Cry protein 134–48; see also cry gene, and individual cry genes
Crystalline protein (ICP), see Cry protein
cucumber mosaic virus (CMV)
coat protein-mediated resistance 193
commercialization of resistance 204
non-PDR approaches 202
post-transcriptional gene silencing 201–2
risk studies of transgenic plants 207
satellite RNA 189, 198
cucumber, PR proteins in transgenic plants 165
C-value paradox 27
cyclodextrin 269–72
cytochrome P450 123, 281
cytokinin(s)
classification 42–3
in inducible gene expression 84
in manipulating senescence 261
in plant tissue culture 44–5, 51
in tobacco transformation 63
selectable marker 87, 89
T-DNA biosynthetic genes 55, 57
cytoplasmic male sterility (CMS) 156, 159
CMS-T 156
D
dark reaction 258–63
manipulation 261
DeKalb 140
defective interfering RNAs 198
defensins 162–5, 175
elicitor response 163
PR proteins 164–5, 172–4, 181
DEFRA, see Department for Environment, Food and Rural Affairs
dental caries 298, 300
deoxyribonucleic acid 1
chloroplast 2–4
genomic 1–10
mitochondrial 2–4
promiscuous 2
structure of 4–5
transcription of, see transcription
Department for Environment, Food and Rural Affairs 333, 338
detoxification 111–2, 116, 119–21, 122–5, 130–1, 231
DHFR, see dihydrofolate reductase
Dicaamba 42, 109
Dicer RNase 7–9, 200–1
2,4-dichlorophenoxyacetic acid (2,4-D) 42, 109, 113, 125;
see also auxin
dihydrofolate reductase (DHFR) 88, 116
dihydropteroylglutamic acid synthesis 88, 108
Diptera 134–5, 138
direct gene transfer 54, 64, 66–71, 74
see also biolistics, electroporation, protoplasts, silicon carbide fibres
directed evolution, see molecular evolution
disease resistance pathways 162–72
DNA, see deoxyribonucleic acid
drought 170, 213–33, 274, 276, 360–3
DuPont 120, 125, 139
dwarfing
cereal 247–9, 346
potato 261
tomato 247

E. coli, aroA gene 88, 119
economics of molecular farming 281, 286, 307–9
edible vaccines 303–5
electroporation 66, 73, 92
elicitors
inducible 163–6
endogenous 163–5
exogenous 163–6
embryo culture 46
embryogenic callus 46, 50, 68–70, 74
endoplasmic reticulum 21–2, 99, 117, 257, 277
modification of fatty acids 277
modification of proteins 257
endosperm 31, 44
biofortified cereals 255–7
Golden rice 251–3
polyfructans 275
starch 269
endotoxin-α, see Cry protein
enhancers
gene 17
increased transcription 111, 195
35S promoter 80–1
Ti-plasmid 56–7
Translational 273
enolpYTUvylshikimate 3-phosphate (EPSP) 114
enolpYTUvylshikimate 3-phosphate synthase (EPSPS) 88, 109–14, 116–20, 121
environmental impact 100
herbicide-resistant plants 109, 127–31
Bt crops 145–6
insect resistance to Bt 141–5
Copy Nature strategy 146
Environmental Protection Agency (EPA) 141, 144–5, 339
Environmental Risk Assessment (ERA) 331–3
EPA, see Environmental Protection Agency
EPSP, see enolpyruvylshikimate 3-phosphate
EPSPS, see enolpyruvylshikimate 3-phosphate synthase
ERA, see Environmental Risk Assessment
erucic acid 277–80
Erwinia spp. 158, 174–5, 251, 274
fireblight 158, 175–6, 181
target for antimicrobial proteins 174–5
EST, see expressed sequence tag
ethylene 170–1, 178, 238–47, 263
in tissue culture 42–3
European corn borer (ECB) 134, 139–42, 321
exon 9–10, 30
expressed sequence tag (EST) 357
fatty acid, synthesis 279–81
FDA, see Food and Drug Administration
field trials 319, 337
fungal resistance 175, 178
herbicide-resistant crops 321–2
insect-resistant crops 139, 148
fireblight 158, 175–6, 181
transgenic resistance in fruit trees 175–6
flavonoids 115–6, 248, 284
FlavrSavr tomato 238, 242
flax 125, 158, 168, 267, 285
flowering, acceleration of 345, 354
flowers
ornamentals and flower colour 245
FLP-frt 100
Food and Drug Administration (FDA) 302, 339
free radical, see reactive oxygen species (ROS)
scavenger 231
freezing stress 212–5, 220–7, 233
fructan 217, 221, 267–81, 311; see also oligofructan, polyfructan
fruit ripening 43, 238–9
functional genomics 29, 124, 357–63
fungal pathogens of plants 159, 164, 173–4
fungicides, use in USA 160
Fusarium spp. 159, 174–5, 176
mycotoxins 176
G
\(gai/GAI \) 247–9, 346
Gateway™ vectors 94–5, 97
gelling agents 41
gene
amplification 116
duplication 30, 116
structure 6–10
gene containment 325–8
gene expression 10–22
chromatin 4–5, 58, 61, 98
codon usage 14, 90, 140, 276, 290
control of 6–22
gene-for-gene hypothesis 168
gene shuffling 120
gene silencing 6–9, 67, 80, 95, 101, 272
chalcone synthase 199
plastid transformation 71–2, 344
RNAi 96–7
small RNAs 6–9
virus and PDR 197–202
see also transcriptional gene silencing, post transcriptional
gene silencing
gene stacking, see pyramiding
generic code 14
genetic mapping 348
genetic markers 348
genetically modified crops
area cultivated 318–21
benefits 318–22
carest 323–31
antibiotic resistance 323–4
herbicide resistance 324–5
see also concerns about GM crops
future developments in 322–3
gene transfer, horizontal 129–30
genome sequencing 27–34, 179, 181, 343, 348, 357
genome sizes 27–8
GFP, see green fluorescent protein
gibberellin(s) 42–3, 246–7, 346
β-glucanase
PR proteins 164–5, 173–4
induction by elicitors 164–7
use in transgenic plants 173–4
glucocerebroside 306
β-glucuronidase 87–90, 205, 228, 290, 294–5
glufosinate ammonia, see Basta, phosphonothricin
glutamate 115, 122
glutamine 12, 41, 108, 221
glutamine synthetase (GS) 108, 110, 122–3, 221
glutathione 49, 230–1, 234, 256
conjugation 124
peroxidase 233–4
matrix attachment regions (MARs) 98
media 39–41
Medicago falcata, see alfalfa
meristem culture 46
messenger ribonucleic acid (mRNA) 6, 9–13, 18–21, 96–8, 185–7, 239–41, 357–60; see also ribonucleic acid
turnover 18–20
see also transcription, translation;
metabolomics 362–3
methionine 11–12, 14, 21, 243, 256–8
methyl bromide 161
methyl jasmonate 22–3, 84, 170
microarray 358, 361
micronutrients 39–41, 255
microribonucleic acid, in breeding 179, 349
microspore culture 47
microRNA 6–8, 200–2
mRNA, see microRNA
mitochondria, genome of 2–4
molecular breeding 346
molecular evolution 120
Monarch butterfly 145–6, 344
monoculture 133, 156, 170, 325
disease resistance 1568
Monsanto 111, 119–20, 125, 139–40, 142, 144, 204–5, 283, 321, 327–8
movement protein
virus encoded 185–7, 203, 292, 294
MPSS, see massively parallel signature sequencing
mRNA, see messenger ribonucleic acid
MS, see Murashige and Skoog
Murashige and Skoog (MS) 40, 49, 50, 63
mutation 28–9, 111, 112, 126–7, 249, 107, 123, 354–7
Mycogen 139–40

<table>
<thead>
<tr>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+/H+ antiport 223</td>
<td></td>
</tr>
<tr>
<td>NaturGard 140</td>
<td></td>
</tr>
<tr>
<td>necrotrophs 157</td>
<td></td>
</tr>
<tr>
<td>nematodes 30, 135, 142, 161, 168, 188, 194</td>
<td></td>
</tr>
<tr>
<td>nepovirus genome structure 195; see also arabis mosaic virus</td>
<td></td>
</tr>
<tr>
<td>Nicotiana tabacum, see tobacco</td>
<td></td>
</tr>
<tr>
<td>nitrate reductase 38</td>
<td></td>
</tr>
<tr>
<td>nitrilase 88, 113, 125</td>
<td></td>
</tr>
<tr>
<td>nitrile 108, 125</td>
<td></td>
</tr>
<tr>
<td>napoleine 55–7, 80, 195</td>
<td></td>
</tr>
<tr>
<td>Novartis 140, 323</td>
<td></td>
</tr>
<tr>
<td>nptII gene 86, 88, 92, 324</td>
<td></td>
</tr>
<tr>
<td>gene rearrangement 68</td>
<td></td>
</tr>
<tr>
<td>transformation of rice 68–71</td>
<td></td>
</tr>
<tr>
<td>see also direct gene transfer, biolistics</td>
<td></td>
</tr>
<tr>
<td>pat gene 88, 122–3</td>
<td></td>
</tr>
<tr>
<td>pathogen-associated molecular pattern (PAMP) 166–72</td>
<td></td>
</tr>
<tr>
<td>pathogenesis-related proteins (PR proteins) 148, 168</td>
<td></td>
</tr>
<tr>
<td>pear 175, 242</td>
<td></td>
</tr>
<tr>
<td>pectin methylesterase (PME) 239, 241–2</td>
<td></td>
</tr>
<tr>
<td>PEG-mediated transformation 72–3</td>
<td></td>
</tr>
<tr>
<td>pest resistance 31–3, 133–55, 345; see also insect resistance</td>
<td></td>
</tr>
<tr>
<td>petroseless acid 280–1, 307–8</td>
<td></td>
</tr>
<tr>
<td>petunia 88, 116–9, 151, 199, 249</td>
<td></td>
</tr>
<tr>
<td>PGRs, see plant growth regulators</td>
<td></td>
</tr>
<tr>
<td>phenylalanine 12, 111–5</td>
<td></td>
</tr>
<tr>
<td>phosphinic acid 108, 110, 125</td>
<td></td>
</tr>
<tr>
<td>phosphinothricin 88, 110, 112, 121–5</td>
<td></td>
</tr>
<tr>
<td>phosphonolipyrurate (PEP) 111, 114, 140, 148, 259, 262</td>
<td></td>
</tr>
<tr>
<td>photosynthesis 107–8, 110, 122, 215–7, 222, 258–63; see also dark reaction, Rubisco, phytochromes</td>
<td></td>
</tr>
<tr>
<td>phytae 255, 295–6</td>
<td></td>
</tr>
<tr>
<td>phytochromes 258–61</td>
<td></td>
</tr>
<tr>
<td>phytoene synthase 238–9, 246–7, 251–2, 263</td>
<td></td>
</tr>
<tr>
<td>plant plastid 158</td>
<td></td>
</tr>
<tr>
<td>aster yellow 158</td>
<td></td>
</tr>
<tr>
<td>Phytophthora spp. 158–61, 174–8</td>
<td></td>
</tr>
<tr>
<td>pildoram 42, 109</td>
<td></td>
</tr>
<tr>
<td>pipintol 217, 269–70</td>
<td></td>
</tr>
<tr>
<td>pink bollworm 139, 144–5</td>
<td></td>
</tr>
<tr>
<td>Pioneer Hi-Bred 120, 125–6, 139</td>
<td></td>
</tr>
<tr>
<td>plant-derived vaccines 302–5</td>
<td></td>
</tr>
<tr>
<td>Plant Genetic Systems (PGS) 123</td>
<td></td>
</tr>
<tr>
<td>plant growth regulators (PGRs) 41–4, 47, 51, 65, 245</td>
<td></td>
</tr>
<tr>
<td>plant pathogens 66, 157–9, 164–70, 178, 180–1</td>
<td></td>
</tr>
<tr>
<td>plant regeneration, see regeneration plant tissue culture, see tissue culture plant transformation, see transformation plant viruses 160, 184–209, 287, 292–3, 338</td>
<td></td>
</tr>
<tr>
<td>plasmid vectors</td>
<td></td>
</tr>
<tr>
<td>Gateway™ 94–5, 97</td>
<td></td>
</tr>
<tr>
<td>pBIN19 91–3, 149, 195</td>
<td></td>
</tr>
<tr>
<td>pBluescript 78</td>
<td></td>
</tr>
<tr>
<td>pGreen 93</td>
<td></td>
</tr>
<tr>
<td>plant transformation 62–5, 77–104</td>
<td></td>
</tr>
</tbody>
</table>
Index

pROK2 149
see also binary vectors
plasticity, developmental 37–8, 41, 51, 214
plastid 2, 23, 71–2, 107, 117–9, 232, 251, 268
plastid transformation 71–2
pleiotropic effects of transgenes 121
pollen 44, 47–8, 129–30, 140, 145–6, 148, 310, 326, 344, 362
polyadenylation 9–10, 19, 98–9, 304, 310
polyfructan 272–81; see also fructan
polygalacturonase (PG) 238–9
polyhydroxyalkanoate (PHA) 282
polyhydroxybutyrate (PHB) 268, 282–3
polymerase chain reaction (PCR) 95, 100, 355
plant breeding 179
virus detection 191, 195–6
polymorphic DNA 350
Polymyxa betae, fungal vector for BNYVV 185
post-transcriptional gene silencing (PTGS) 6–8, 199–209
coat protein-mediated resistance 193–5
post-translational modification 16, 21–2, 287, 289, 310, 312, 360–1
potato
antimicrobial proteins 174–6
biopharmaceuticals 305–9
breeding 161
disease resistance 158–81
herbicide resistance 125
insect resistance 134, 139, 142, 148–53
molecular farming 268–309
vaccines 302–4
viruses 205–8
virus-free plants 189
wound-inducible promoter 173
yield 261
potato leafroll virus (Polerovirus)
coil protein-mediated resistance 205
potato virus X (PVX)
coat protein-mediated resistance 205, 207
potato virus Y (PVY)
coil protein-mediated resistance 205, 207
commercialized resistance 161, 205
post-transcriptional gene silencing 199–200
reduction in tuber yield 189
risk 207
Potrykus, Ingo 253
precautionary principle 334–5
proline 12, 14, 41, 217–8, 221, 223, 226
promoter analysis 24–6, 87
for Bt genes 139, 144, 147–9, 152
inducible 81, 83–4, 89, 97
abscisic acid 26, 85, 226, 83
auxin 85
 copper 83
heat-shock 84
senescence 84
steroid 83
tetracycline 82
wound 84, 147, 173, 177

potato virus X (PVX) 173
coat protein-mediated resistance 207
post-transcriptional gene silencing 199

Q
quantitative trait locus (QTL) 352–4

R
random amplified polymorphic DNA (RAPD), in plant breeding 179–80, 350
rape, see oilseed rape
reactive oxygen species (ROS) 165, 172, 212–4, 221, 229–334
receptor, Cry protein 137–8, 141, 148
recombinases, site-specific 95, 98, 100, 327
refuge, pest management 143–5
regeneration 37–8, 46–8, 50–3, 61–3, 70–4, 87, 123, 325
importance of genotype 50
plant transformation 48–52
replicase complex

Rhizobia spp. 66, 157
Rhizoctonia spp. 157–159
transgenic resistance 174
rhizomania 190–1; see also BNYVV
ribonucleic acid I, 6–22; see also messenger ribonucleic acid
alternative splicing 18–9
antisense 8, 96–7, 197–201, 204, 240–7, 263, 271, 280
processing 10, 20, 98
Index

synthesis 6–10, 197, 208
translation 6, 10–16
ribosome-inactivating protein (RIP) 174
rice
biolistics 68–71
C3 photosynthesis 262
chitinas and glucanases 173
coatprotein-mediated resistance 183
engineering nutritional qualities 251–6
gene rearrangement 67
insect resistance 132, 148–9, 151–3
secondary products 163
signal sequence 300
virus diseases 159–60
yield 287
see also Golden Rice
rice genome sequencing 32–3
rice stripe virus (RSV)
coast protein-mediated resistance 193
rice tungro virus complex 153, 159–60, 193
rice yellow mottle virus (RYMV)
coat protein-mediated resistance 193
ricolenic acid 281
Ri plasmid 65
RISC, see RNA-induced silencing complex
risk assessment 130, 331–5
risk; see also concern
effect of satellite sequences 198
transcapsidation and recombination 206–8
RITS, see RNA-induced transcriptional silencing complex
RNA, see ribonucleic acid
RNA-directed methylation 9
RNAi, see RNA interference
RNA-induced silencing complex (RISC) 7–9, 200–1
RNA-induced transcriptional silencing complex 9
RNA interference 6, 96–7, 179
RNA viruses
structure, classification and expression systems 166, 186
root culture 46
Roundup 110–2
Roundup Ready crops 117, 119, 121, 125, 128
R-RS 100
Rubisco 4, 25, 258–9, 282, 284
manipulation in C3/C4 systems 259, 262
Rubisco activase 19
S
SAG promoter (senescence-related) 261; see also promoter, inducible
SAGE, see serial analysis of gene expression
salinity 170; see also salt stress
salt stress 212–4, 233–4
saprohytes 158
satellites, RNA 185
cross-protection 189
RNA protection 197–8
virus genome component 185
scab 159, 161
resistant potato 161
secondary products as antimicrobials 163
secretory antibodies, IgA 298–9, 303
secretory antibodies, IgG 298
signal sequences
human serum albumin targeting to ER 298
immunoglobulin 298
signal transduction cascades, map kinases 166–7
signal transduction cascades, map kinases 166–7
silicon carbide fibres (Whiskers™) 66, 73
simple sequence repeat (SSR) 349
single chain antibodies 151–3
SNP, see single-nucleotide polymorphism
somatic embryogenesis 43, 46, 48–52, 362
S-triazine 110, 112, 123, 158
starch 263
modified 268, 270–2
plastids 107
synthesis 267–8
starch branching enzyme (SBE) 270, 271
starch synthase 268, 269, 271
StarLink 139–41, 204
SSR, see simple sequence repeat
stable expression systems for protein production 139, 288
stress
abiotic 131, 212–5, 229, 231, 234, 276, 362
biotic 106, 212–4, 366
oxidative 212–3, 221, 229, 231–4
temperature 212–5, 224–7, 276
water deficit 212–8, 220–2, 229, 276
stress tolerance 212–36; see also stress, individual stress tolerances
S-triazine 110, 125
subgenomic promoter, TMV 186–7, 195, 301
substantial equivalence 331, 334–6
subunit vaccines, plant derived 286
sucrose, in tissue culture 39–41, 50
sugar alcohol 217, 268–70, 283, 296
sugar beet 45, 125, 130, 190–1, 193, 208, 213, 221, 268, 273–5
see also beet necrotic yellow vein virus
sulphonylureas 88, 109, 126
super weeds 86, 129, 324–5
superoxide 229–34, dismutase (SOD) 229–30, 233
sweet potato 151, 189, 256, 271, 274–5
alfalfa 49
carrot 49
cereal 30
somatotrophin 305
expression levels in chloroplasts 310
sorbitol 41, 217, 221–2
Southern corn leaf blight 156, 159
spinach 218, 220, 309
splicing 7, 10, 16, 18–20
squash
coat protein-mediated resistance 193
commercialized virus resistance 204
SSR, see simple sequence repeat
stable expression systems for protein production 139, 288
starch 263
modified 268, 270–2
plastids 107
synthesis 267–8
starch branching enzyme (SBE) 270, 271
starch synthase 269, 271
StarLink 139–41, 300
stearic acid 280
Streptococcus mutans
secretory antibodies and dental carries 298
Streptomyces 88–9, 112, 123, 158
stress
abiotic 131, 212–5, 229, 231, 234, 276, 362
biotic 106, 212–4, 366
oxidative 212–3, 221, 229, 231–4
temperature 212–5, 224–7, 276
water deficit 212–8, 220–2, 229, 276
stress tolerance 212–36; see also stress, individual stress tolerances
S-triazine 110, 125
subgenomic promoter, TMV 186–7, 195, 301
substantial equivalence 331, 334–6
subunit vaccines, plant derived 286
sucrose, in tissue culture 39–41, 50
sugar alcohol 217, 268–70, 283, 296
sugar beet 45, 125, 130, 190–1, 193, 208, 213, 221, 268, 273–5
see also beet necrotic yellow vein virus
sulphonylureas 88, 109, 126
super weeds 86, 129, 324–5
superoxide 229–34, dismutase (SOD) 229–30, 233
sweet potato 151, 189, 256, 271, 274–5
synteny 32–3
systemic acquired resistance 170–1
systemic response 162, 170
transgenic plants 178
systems biology 363

T

TA-box 11, 16–7, 81–2, 228
taxonomy, virus 184
T-DNA
border sequences 56–7, 59–60, 62–3
clean gene technology 100
dmple structure 55–9
dmple transfer 59–61
technology property rights (TPR) 254, 327; see also Material Transfer Agreement (MTA)
terminator technology 318, 326, 329
tetracycline inducible promoter 82, 327
tetracycline repressible promoter 82
TGS, see transcriptional gene silencing
Ti plasmid 55–61
TILLING 355–7
tissue culture 37–53
tobacco
 Agrobacterium-mediated transformation of 62–3
Calvin cycle and photosynthesis 261–2
chloroplast map 3
chloroplast expression 310
budworm 134, 139, 144–5, 149
herbicide resistance 119–20, 127
hornworm 134, 142
insect resistance 1134, 139, 142, 144, 148–51
molecular farming 268, 273–4, 276, 281, 284, 286–7
organogenesis 51
pharmaceutical production in 287, 289, 298, 300–7, 311
phytochromes 260
resistance to bacteria 174, 176
resistance to fungi 165, 173–7
resistance to viruses 192–3, 195–9, 202, 209
yield 287
tobacco mosaic virus (TMV)
 post-transcriptional gene silencing 199
 tobacco mosaic virus (TMV)
 antibody production 300–2
 coat protein-mediated resistance 192–5, 203, 208–9
 movement protein 188, 194
 N gene 209
 structure and expression systems 186
 translation enhancer 195
 vectors for protein synthesis 292, 294
 α-tocopherol 230, 231–2, 255–6
 tolerance
 virus infections 197
tomato 125
diseases 159–60, 197, 202
edible vaccines and biopharmaceuticals 287, 301–5
organogenesis 51
pharmaceutical production in 287, 289, 298, 300–7, 311
phytochromes 260
resistance to bacteria 174, 176
resistance to fungi 165, 173–7
resistance to viruses 192–3, 195–9, 202, 209
yield 287
transfer RNA 6
transformation 20, 22, 25, 32–3, 37, 44–6, 48, 50–3, 54–76
transgenes
copy number 61, 67, 71, 73, 98
position 98, 192
features 98
transgenic crops, see genetically modified crops
transient expression, protein synthesis 66, 100, 204, 288
idiotype vaccine 301
plant derive vaccines 302
transmission 4, 6–7, 10–6, 20–1, 23, 29, 99, 107, 117, 195, 201, 273
repression by uORFs 20
trehalose 89, 217, 221–2, 268–70, 276
triacylglycerol (TAG) 277–8
Trichoderma spp., source of chitinase gene 173
trichosanthin 305–6
tRNAs, see transfer RNA
trypsin 149, 290, 292, 295, 309
trypsin inhibitor 149–51, 165, 305
tryptophan 12, 111, 115–6
turgor potential 215
tyrosine potential 111, 115, 255

U

United States Department of Agriculture (USDA) 309, 311, 327–9

V

vaccines 285–310
vacuolar targeting 22, 273–6
vacuole 21–2, 123, 218, 222–3, 257, 268, 270–5, 282, 284–5
vectors, binary, see binary vectors
Venturia spp., scab in fruit trees 173
Vermicompost spp. 175
virulence genes 60–4
virus classification and structure 185
virus-like particles (VLPs)
 coat protein-mediated resistance 193
 arabis mosaic virus 195
 TMV resistance 193–4
 virus replication
 antisense 198
 effect of satellite RNA 197
 viscosity, tomato paste 241–2
 vitamin A 230, 249
deficiency 251
 see also Golden Rice, β carotene, provitamin A
vitamin biosynthesis 107
vitamin C, 230–1; see also ascorbic acid
vitamin E, 230; see also α-tocopherol
vitamins, in tissue culture 38–9, 41, 44

W

water deficit, see stress, water deficit
water potential 214–5
water shell 216
watermelon mosaic 2 virus (WMV2) 193
coop protein-mediated resistance 193
commercialization of resistance 204
PTGS 202
weedkiller, see herbicide
weeds 106-7, 111, 121-2
herbicide resistant 123, 129; see also super weeds
volunteer 121, 129
wheat 47, 149, 151, 165, 174, 176, 178, 223, 249-50, 256, 272, 287
electroporation 73-4
coop protein-mediated resistance 193, 209
diseases 158-9
genome 27, 33
global warming 322
photosynthesis 362
soil-borne wheat mosaic virus (SBWMV) 193
yield 212-3
Whiskers™ 73
Xanthomonas spp. 158-9, 169, 177
resistance to 180
xenobiotic 123, 229
xylanases 295
Y
yield 2
antibodies 299
crop 106, 133, 148, 222, 234, 237
biomass 287, 295, 309,
economics of biopharmaceuticals 286, 307-9
hirudin 289-90, 305
protein yield from engineered plants 288-9, 292-4, 306, 309
YieldGard 139-42
Z
Zea mays, see maize
zeaxanthin 230
Zeneca 238, 241-2
zucchini yellow mosaic virus (ZYMV) 193
coop protein-mediated resistance 193
commercialization of resistance 204
cross-protection 189
risk studies 207
zwitterion 217
Human-directed genetic manipulation began with the domestication of plants and animals through artificial selection in about 12,000 BC. Various techniques were developed to aid in breeding and selection. Hybridization was one way rapid changes in an organism's makeup could be introduced. By modifying the plasmid to express the gene of interest, researchers can insert their chosen gene stably into the plant's genome. The only essential parts of the T-DNA are its two small (25 base pair) border repeats, at least one of which is needed for plant transformation. The genes to be introduced into the plant are cloned into a plant transformation vector that contains the T-DNA region of the plasmid. An alternative method is agroinfiltration. We describe a robust gene replacement strategy to genetically manipulate the smut fungus Ustilago maydis. This protocol...